
RAVEN : Perception-aware Optimization of Power Consumption
for Mobile Games

Chanyou Hwang∗
chanyou@nclab.kaist.ac.kr

School of Computing - KAIST

Saumay Pushp∗
saumay@nclab.kaist.ac.kr

School of Computing - KAIST

Changyoung Koh
changyoung@nclab.kaist.ac.kr
School of Computing - KAIST

Jungpil Yoon
jdsp@nclab.kaist.ac.kr

School of Computing - KAIST

Yunxin Liu
yunxin.liu@microsoft.com

Microsoft Research

Seungpyo Choi
spchoi@nclab.kaist.ac.kr

School of Computing - KAIST

Junehwa Song
junesong@nclab.kaist.ac.kr

School of Computing - KAIST

ABSTRACT
High-end mobile GPUs are now becoming an integral part of mo-
bile devices. However, a mobile GPU constitutes a major portion of
power consumption on the devices, and mobile games top as the
most popular class of graphics applications. This paper presents
the design and implementation of RAVEN, a novel, on-the-fly frame
rate scaling system for mobile gaming applications. RAVEN utilizes
human visual perception of graphics change to opportunistically
achieve power saving without degrading user experiences. The sys-
tem develops a light-weight frame comparison technique to mea-
sure and predict perception-aware frame similarity. It also builds
a low resolution virtual display which clones the device screen
for performing similarity measurement at a low-power cost. It is
able to work on an existing commercial smartphone and support
applications from app stores without any modifications. It has been
implemented on Nexus 5X, and its performance has been measured
with 13 games. The system effectively reduces the overall power
consumption of mobile devices while maintaining satisfactory user
experiences. The power consumption is reduced by 21.78% on aver-
age and up to 34.74%.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; •Computingmethodologies→ Perception;

KEYWORDS
Perception-aware processing; Energy-efficient processing; Frame-
rate scaling; Mobile games; Experiments; Measurement; Mobile
systems

∗Co-primary authors, order chosen alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’17, October 16-20, 2017, Snowbird, UT, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4916-1/17/10. . . $15.00
https://doi.org/.1145/3117811.3117841

1 INTRODUCTION
Over the past three years, the processing power of mobile GPUs
has increased more than double [5][6]. In response, mobile game
application developers have begun to capitalize on the modern
GPU’s processing power to make their game graphics look crispier
and more appealing. However, those visually appealing mobile
games come at a high energy cost. Each high-resolution frame
consumes a large amount of system resources, especially the GPU
computation, and results in high system power consumption.
Mobile games top as the most popular class of graphics appli-

cations (apps) on smartphones [18] and are frequently the major
sources of energy drain. Depending upon the amount of graphics
contents inside a game app, the GPU power consumption increases
almost linearly. However, few power management studies have
been performed for mobile games [23]. In this paper, we explore the
potential to optimally use limited computing resources and energy
by delving into the computation process from the perspective of
human perception, i.e., game player’s perception in this case. We
specifically look into the rendering process of gaming apps consid-
ering perceptual sensitivity of human, and re-organize the process,
emphasizing sensitive moments while de-emphasizing the rest.

Upon the above idea, we present RAVEN1, a novel system for scal-
ing the rate of rendering frames which leverages human visual
perception. RAVEN introduces perception-aware scaling of frame-
rendering rates (PAS) while a user is engaged in a game-play. In
detail, PAS reduces an application’s rate of rendering game frames
whenever succeeding frames are predicted to be perceptually sim-
ilar enough. For this, we set a side channel to track the rendered
frame sequences which can tailor user’s perception with graphics
changes in a game-play. In this way, RAVEN opportunistically re-
duces power consumption of a GPU. Existing methods to measure
user’s perception of visual changes such as structural similarity
(SSIM) [33] are computationally expensive and not adequate for a
system to maintain quality user experiences during game-play. We
leverage YUV color space [12] to develop a simple, but effective
way to track user’s perception on-the-fly.

There have been efforts to reduce battery consumption in playing
games or other apps on mobile systems. User configuration-based
1RAVEN is a DC comics character, from whom we would like to signify the ability to
‘sense and alter’.

https://doi.org/.1145/3117811.3117841

approaches have been adopted in many systems, e.g., Samsung-
Game-Tuner [9]. They allow users to pre-set manually parameters
related to display resolutions or frame rates. They could lead to
energy savings; however, it is difficult to match consistently users’
desires for quality experiences which potentially require different
configurations depending on game contents such as scene changes
or graphics changes during plays. Approaches for user interaction-
based rate control have also been attempted [27][34]. They make
systems respond with high resolutions or frame rates upon user
interactions assuming that users pay higher attention at those mo-
ments. However, moments of high visual attention do not always
overlap with those of user interactions. In addition, user interac-
tions frequently come as responses to game flows intended in a
game design. To provide a truly immersive game-play and energy
saving, the system needs to consider visual fidelity, i.e., the game-
play should be seamless to the eyes of a user.

There are several challenges in building the RAVEN system. First,
it is important to measure the perceptual similarity efficiently. As
mentioned, inferring the perceptual similarity with existing meth-
ods incur high computational cost. The system should be able to
approximate such computation-intensive methods at a very low
cost. Second, while saving energy, degradation of user experiences
caused by the system should be minimal. Third, mobile gaming
apps and GPU drivers are closed source. This asks for building a
system that is transparent to the apps, and avoids low-level system
optimization.

To overcome the above challenges, we have developed an energy-
efficient method to measure perceptual similarity exploiting the sus-
ceptibility of human eyes to color difference. The proposed method
leverages the difference in the luminance components (in YUV
color space) between frames. We extensively evaluated the method
by comparing it with the well-known SSIM method under various
settings, and show that the proposed luminance-based method can
efficiently measure perceptual similarity with low computational
costs. Also, we build in the RAVEN system a virtual display, cloned
from themain screen of the device but with amuch lower resolution.
The system reads the graphical contents of the small virtual display
for the similarity measurement with low computational and energy
overhead. In addition, RAVEN realizes the idea of perception-aware
rate scaling by interfering and impeding the rendering loop of a
game app. For frames that are perceptually similar to the current
frame, the loop skips its operation, i.e., rendering of those frames.
Instead, a delay for the amount of corresponding frames’ periods,
is inserted to the loop. Afterwards, it jumps to the next frame to
be rendered. In this way, the rate of frame rendering is effectively
scaled. The RAVEN system is designed and implemented by customiz-
ing an Android framework as Android’s system services, which
makes itself transparent to apps and avoids the complication of
accessing closed source.
We have implemented the RAVEN system on a Nexus 5X smart-

phone. We conduct comprehensive experiments and a user study
to evaluate our implementation with 13 real mobile games. Exper-
imental results show that all 13 games can run successfully with
per-frame, real-time perception-aware scaling of frame rendering
rates. The energy per game session can be reduced by 21.78% in av-
erage and up to 34.74% while maintaining quality user experiences.
To the best of our knowledge, RAVEN is the first system designed

Figure 1: Frame rates in a game-play and while standing in
a game lobby.

and implemented to achieve rate scaling and energy savings based
on perceptual similarity for mobile games. The main contributions
of this paper are:
• We present a novel rate-scaling technique for rendering app
frames based on the human visual perception to game’s graphics
to reduce energy consumption on-the-fly.

• We explore and develop a novel, energy-efficient perceptual
similarity measurement method leveraging the differences in
luminance values between frames.

• We present the design and implementation of the RAVEN system
with its application transparency.

• Weadopt a user-tunable approachwhich provides an on-demand
access to tune power drain and user experience.

• We conduct experiments and a user study to confirm the effec-
tiveness of our system for quality user experience and power
saving.

The rest of this paper is organized as follows. Section 2 motivates
the need of RAVEN and set our goals. It also introduces the graphics
processing flow of Android. Section 3 gives an overview of RAVEN’s
system architecture and defines its key components. Section 4 and
Section 5 present how to perform frame comparison for regulat-
ing the applications’ rates of rendering frames, and our rationale
behind building a low-power virtual display. Section 6 describes
some details on RAVEN’s implementation and Section 7 reports the
evaluation results. Section 8 surveys the related work and Section 9
discusses the limitations of our system, while Section 10 concludes
the paper.

2 MOTIVATION AND BACKGROUND

Motivation. A high frame rate is beneficial if it provides a good
user experience. However, we have observed that a high frame rate
may not always be necessary in mobile games. We have played a
set of mobile games (see Figure 1) and measured their frame rates.
We provide description on the types of the games used in our study
in Section 7. We have intercepted eglSwapBuffer() function in
OpenGL ES/EGL [13] which gives accurate numbers on how fast
games generate new frames. In a game-play, the game may enter
different states, depending on user interactions and game stages.We
focus on two cases: “In-Game” where we play a game actively and
graphics contents on the screen change quickly; and “Lobby” where
a game is in a session-transition stage or shows setting menus and
thus we perceive few or zero changes on the screen.

Figure 1 presents the results. It shows that no matter the states of
the games, they always ran at a high frame rate of 60 FPS. Even in the

Figure 2: Proportions of similar and non-similar adjacent
frames in different gaming apps.

“Lobby” case where the screen showed relatively-static contents,
they still kept generating 60 new frames per second. The same
observation was also reported in a previous study [34].

We have further studied similarity between consecutive frames
in playing games. We have employed SSIM [33] to calculate the
similarity between frames. A SSIM index is a number between 0
and 1, and a value higher than 0.97 is considered as a strong level
of similarity in mobile games [22]. We have chosen 0.975 as the
threshold to decide whether two frames are similar or not. Figure 2
shows how many frames are similar in playing the selected games.
On average, we have recorded 15,035 frames for each game. That
is, the average game-play time was 4.2 minutes. Up to 93.5% of
the total frames generated by the games are indeed very similar.
This strong similarity existed not only for “Lobby” frames but also
“In-Game” frames.

The observations show that 1) the game apps maintain high
frame rates irrespective of their game states, and 2) large portions
of consecutive frames of the game apps show strong similarity.
These findings give an opportunity to save energy without compro-
mising user experiences by regulating redundant frame renderings.
Specifically, when consecutive frames are highly similar, we may
bypass rendering the frames and reduce the power consumption.
Thanks to strong frame similarity, the user experiences will not
be compromised much. These findings motivate us to seek for a
system to optimize power consumption of mobile games using
perception-aware frame rate scaling.

Goals.We set the following goals and requirements in designing
a target system: 1) Automatically change the rates of rendering
application frames on-the-fly without requiring any user efforts; 2)
Be able to run on commercial smartphones without requiring any
special hardware or re-building a device driver; 3) Support legacy
apps without requiring any app-side modifications; 4) Effectively
achieve significant power savings.

2.1 Graphics Processing on Android
We briefly describe some background information on Android
graphics operations and OpenGL ES/EGL [13] related to our design.
Android applications use OpenGL ES API [17] to leverage GPU
acceleration for rendering their graphics contents and to draw their

Figure 3: Flow of graphics processing on aNexus 5X running
Android 6.0.1. OpenGL ES/EGL is paddled by RAVEN, and the
frame-rendering process of GPU is regulated.

User Interface (UI) objects. Rendered results are stored in a Buffer-
Queue[3], which consists of graphics buffers. Each app has its own,
separate BufferQueue. The Android system uses a system service
called SurfaceFlinger[10] to coordinate all rendered graphics
contents of foreground apps and the Android UI subsystem. On
a smartphone, the display driver typically refreshes the screen at
60 Hz and generates a VSYNC (Vertical Synchronization) signal for
each frame period. Upon receiving a VSYNC signal, SurfaceFlinger
collects the graphics buffers (from multiple apps) and sends them
to Hardware Composer. Hardware Composer composes the final
graphics contents which will be displayed on a device screen. A
detailed flow of Android graphics processing is shown in Figure 3.

3 SYSTEM OVERVIEW
The idea of RAVEN can be described in high level with its major com-
ponents and their interactions. The system consists of three major
components which collectively perform scaling the rates of game-
frame rendering (Figure 4): FrameDiff Tracker (F-Tracker), Rate
Regulator (R-Regulator), and Rate Injector (R-Injector). The
system works in a pipelined fashion. First, F-Tracker measures
perceptual similarity between two recent frames at a low energy
cost. Then, R-Regulator predicts the level of similarity between
the current and the next frame(s). If the next frames are similar to
the current one, it notifies R-Injector to limit frame-rendering
rates by injecting some delay in a rendering loop and skip graphics
processing for unnecessary frame(s). Presently, RAVEN is able to
skip up-to the maximum of three frames, and thus, inflict frame-
rate drop down to 15 FPS. The continuous regulation of the rates
results in opportunistic energy savings. Figures 5 and 7 show three
different system states of current implementation, i.e., No-skipping,
1-Skipping, and 3-Skipping states, and their transitions correspond-
ing to different rates. Note that the system is not limited to the
above and could be generalized to include other skipping states.

F-Tracker measures perceptual similarity between frames on-
the-fly. To compute the perceptual similarity efficiently, the sys-
tem takes a twofold strategy. First, RAVEN leverages a light-weight,
low-resolution virtual display supported by Android system. Con-
structing a virtual display is lighter weighted than reading a display
frame buffer as the latter involves a higher resolution (equivalent
to the native resolution of the screen). Second, to measure percep-
tual similarity between frames, RAVEN utilizes an approximation
of SSIM based on the Y(luminance) component in the YUV color
space. SSIM is a well-known index to measure perceptual similar-
ity, but computationally expensive and hard to compute for every

Figure 4: Modified rendering loop for delay injection and
rate scaling. White-colored blocks are RAVEN’s components.

Figure 5: Different system states and their transitions in
RAVEN: 1-Skipping skips a frame and results in 30 FPS, and
3-Skipping does three and results in 15 FPS.

frame at 60 FPS. In Section 4.1, we show the design rationale and
the performance of our approximation method.
The system forces apps to skip perceptually similar frames by

applying a proper frame rendering rate. Consider the following
three frames (Section 4): the current frame (fN), the frame which
is expected to arrive after 16.7ms (fN+1) , and the one, expected
after 50ms (fN+3). R-Regulator predicts the similarity scores of
(fN , fN+1) and (fN , fN+3), and compares them with thresholds τ1
and τ3 (used as scaling factors), respectively. Each threshold stands
for the minimum required similarity level for skipping fN+1 or
fN+1∼fN+3. If the predicted scores exceed their threshold values,
the system applies the corresponding rate scaling by skipping the
frames.
For rate scaling, RAVEN interferes and modifies the rendering

loop of a gaming app (see Figure 4). Upon skipping decision of
some frames, it inserts into the loop a delay for the duration of the
corresponding frames’ periods and have the system sleep for the
duration without performing the rendering operations. The loop
awakens after the delay and jumps to the next frame to render. This
ensures the rate of frame rendering to be effectively scaled.

RAVEN is designed and implemented by customizing an Android
framework, i.e., FrameDiff Tracker and Rate Regulator as An-
droid’s system services as well as R-Injector by adjusting the
system function, eglSwapBuffer. The rendering loop in a mobile
game runs in a separate thread from the main thread of the game.
The operating system ensures that the rendering loop processes
each frame to attain the maximum frame rate of 60 FPS. The RAVEN
system successfully hooks into the rendering loop as above by
customizing an Android framework, more specifically eglSwap-
Buffer() function is called in the rendering loop and swaps the
graphical content inside EGLSurface’s buffer (an off-screen buffer

Figure 6: Flow of operations at a thread level.

which stores SurfaceView, SurfaceTexture etc. of an app). We mod-
ify the eglSwapBuffer() function in Android’s EGL API and inject
delay in this function through R-Injector. Thereafter, the opera-
tion of the loop is regulated with the inserted delay, and enforces
the desired frame rate.

At the thread level, three threads play important roles in the op-
eration of RAVEN: game app’s rendering thread, RAVEN’s FrameDiff
Tracker thread, and Rate Regulator thread. Figure 6 presents
how these threads communicate with each other to work together.
At runtime, the rendering thread generates the pixels of the current
frame. The FrameDiff thread reads the down-scaled pixels through
a virtual display in a synchronous way, and compares Y−values of
consecutive frames and sends the result to the Rate Regulator
thread. Finally, the Rate Regulator thread calculates the appro-
priate delay to adjust the frame rendering rates, and then send the
delay value to the rendering thread. The successful implementation
of RAVEN based on the customization of an Android framework
as above leads the system to be transparent to apps, enabling it
to effectively support commercial gaming apps from app stores
without any modifications.

4 PERCEPTUAL SIMILARITY AND
REGULATION OF FRAME RENDERING
RATES

The idea of regulating rendering rates without degrading user ex-
periences is to skip rendering frames whenever adjacent frames
are perceptually similar. However, without actually rendering a
frame, we do not know how similar it is with the previous one,
and thus, cannot decide whether to render it or not. Therefore,
RAVEN compares the recently rendered frames, measures their per-
ceptual similarity, and uses the result to decide whether to skip
future one(s). Figure 7 depicts the prediction scheme as well as the
rendering process on a sequence of frames.

The discussion in this section focuses on the case of developing
two different skipping states capitalizing on four frames; however,
the idea of perception-aware optimization (or rate scaling) could
easily be generalized in diverse ways. Importantly, the similarity
among consecutive frames is prevalent, and there is a broad spec-
trum of potential to utilize such similarity. Particularly, it would be
feasible to develop many different levels of frame skipping transi-
tions and rate regulations.
Consider the four frames, fN−k , fN , fN+1, and fN+3, where

fN−k is the previously rendered frame, fN is the currently ren-
dered one, and fN+1 and fN+3 are the future frames to be rendered.

Figure 7: Process of rendering a sequence of frames in RAVEN (Best viewed in color).

Without RAVEN, these frames will be sequentially rendered, how-
ever, with RAVEN, the system first predicts the perceptual similarity
scores of the future frames, i.e., fN+1 and fN+3 from those of the
previously rendered ones. If the result of prediction for fN+1 is
sufficiently similar to fN , the system skips the rendering of fN+1.
If fN+3 is also predicted to be similar, the system skips fN+1, fN+2,
and fN+3. The user-perceived experience is maintained as if the
frame rate is still 60 FPS, even though the system has reduced the
rates to 30 FPS or 15 FPS.

4.1 Building a Perceptual Similarity Score
To build a perceptual similarity score for frame comparison, we
leverage Y−Difference (or Y−Diff). Y−Diff is the difference in
Y(luminance) values of two images in the YUV color space. It takes
into account the human perception associated with perceiving
brightness as human vision is sensitive to brightness changes. In
the human visual system, a majority of visual information is con-
veyed by patterns of contrasts from its brightness changes[35].
Furthermore, the luminance is a major input for the human percep-
tion of motion[30]. Since people perceive a sequence of graphics
changes as a motion, consecutive images are perceptually similar if
people do not recognize any motions from the image frames. From
this perspective, Y−Diff could be suitable for measuring perceptual
similarity. Also, as we discuss later in Sections 4.2 and 5, Y−Diff is
a good, energy-efficient approximation of SSIM.
Our primary interest in using Y−Diff is on its low overhead.

Its computation requires O(N) comparisons (N is the number of
pixels) as well as a single matrix multiplication to transform a
color space, from RGB to YUV. The overhead is low enough to
compute it for every frame while matching the rate of 60 FPS.
SSIM requires a relatively heavy computational cost. Regarding the
limited computing resource of mobile devices, computing SSIM for
every frame is impractical.

Why not grid-based comparison with RGB? A straightforward
approach in measuring graphics difference between image frames
would be to compare them in RGB space. However, as shown in
Figure 8, when it comes to measuring structural similarities, SSIM
shows a linear relationship with Y−Diffs while not with RGB dis-
tances.

Why not SSIM scores on a low-resolution virtual display of
RAVEN? Computing SSIM indices of consecutive frames on a mobile
environment is expensive from the view of both computation and
energy costs. We measured the cost of calculating SSIM indices for
every pair of frames on a Nexus 5X smartphone. Comparing frames

Figure 8: Comparison of RGB distances and Y distance with
respect to SSIM.

with a low resolution of 192×108 pixels continuously took power
drain of 332mW, and computation time of 87ms. This result shows
that we could only calculate SSIM indices of up to 10 frames per
second on single-thread settings, and the extra power consumption
makes it impractical to save power.

Would it be reasonable to focus on luminance component?
Chrominance components (U and V) may show dramatic changes
while luminance does not change significantly. In such cases, the
system’s performance would get affected if only Y−Diff is used. To
see if such cases occur frequently, we analyzed the videos recorded
while playing Cookie Run and extractedY−Diff,U−Diff, andV−Diff
of consecutive frames. We observed that for the pairs of frames
with small Y−Diff values (within the low 10%), 99.95% of them had
also small U−Diff and 99.9%, small V−Diff values (and belonged
to the low 20%). From the observation, it is not highly likely that
abrupt changes occur in chrominance values when luminance show
gradual changes. Therefore, it would be reasonable to focus on
luminance in estimating perceptual similarity for energy-efficient
processing.

4.1.1 Using Y−Diff for perceptual similarity.
We look into the performance of the approximation by Y−Diff in
comparison to SSIM. For this, we calculate the correlation between
the two.

Performing a fair comparison between Y−Diff and SSIM is diffi-
cult in the case of gaming apps. Game-plays are not reproducible
because of their non-deterministic nature. Therefore, we take a
record and replay based approach. We first recorded the screen
using a screen recording application. Then, we used the OpenCV

Figure 9: Correlation between Y−Diff and SSIM (Best viewed
in color).

Figure 10: (Best viewed in color) Correlation between
SSIM(fN−1, fN) and SSIM(fN , fN+1) (Pearson’s correlation co-
efficient: 0.93). The correlation between SSIM(fN−1, fN) and
SSIM(fN , fN+3) has also been explored (Pearson’s correla-
tion coefficient: 0.90), but the graph is omitted to save space.

library [8], and extracted each frame of a game-play. Thereafter, we
iteratively calculated the Y−Diff and SSIM values for every frame
fN with respect to its previous four frames. In total, we analyzed
16 recorded plays of 13 games.

Figure 9 shows the relation between SSIM and Y−Diff values.
Each color in the figure represents a game app. SSIM and Y−Diff
values are strongly correlated and shows a linear relationship (Pear-
son’s correlation coefficient of -0.926). We thus approximate SSIM
with Y−Diff by linear regression. We denote the approximation as
Estimated Perceptual Similarity (EPS).

4.2 Estimating Frame Rendering Rates

Predicting perceptual similarity: Tomake decisions on whether
to skip a future frame(s), we first look into the perceptual similarity
of the current frame with the previously rendered one, and then
predict the similarity with future one(s) to be rendered.
Figure 10 shows the relationship between the similarity scores

of consecutive game frames from the 13 games. They show a linear
relationship with a Pearson’s correlation coefficient value of 0.93.
This fact motivates us to use linear regression for predicting simi-
larity scores between two frames. That is, the similarity score with
a future frame in-line is predicted from that with a previous one.
Let EPS(fN , fN+l) represent the prediction of perceptual similarity
between frames fN and fN+l . It is basically predicted from Y−Diff

Figure 11: Correlation between SSIM(fN , fN+1) and the
Y−Diff(fN−1, fN) + ‘moving average’ of Y−Diff (Best viewed
in color).

of previous frames. Currently, the system implements two differ-
ent levels of rate reduction, 30 FPS and 15 FPS, corresponding to
1-skipping and 3-skipping, respectively, and utilizes EPS(fN , fN+1)
and EPS(fN , fN+3). To improve the performance of similarity pre-
diction, it leverages the moving average of previous Y−Diff values
to reflect their past history.
Figure 11 shows the correlation between the SSIM and the pre-

dicted similarity scores using both Y−Diff and the moving average
of Y−Diff with the window size 10. The resulting equation of re-
gression is:

EPS(fN , fN+l) = 1 − ckl1 × DY(fN−k , fN) − ckl2 ×maw . (1)

In the equation, the index k of the previous frame fN−k depends
on the current state, i.e., k = 1, 2 and 4 if the state is No-Skipping,
1-Skipping, and 3-Skipping, respectively. Also, there are two possi-
ble l values, i.e., 1 or 3, to predict EPS(fN , fN+1) or EPS(fN , fN+3).
DY(fi , fj) is the Y-Diff between fi and fj .maw is the moving aver-
age of the recent Y−Diff scores between consecutive frames over
window sizew . ckl1 and ckl2 are regression coefficients to predict
EPS(fN , fN+l) with DY(fN−k , fN). These values are obtained from
the videos of the selected games.
The window size of moving average affects the performance of

the regression. We compared R2 (R-squared) values while varying
the window sizes to 1, 2, 5, and 10 frames. R2 is a measure of
goodness of fit to the regression model. For each size, the R2 values
are obtained as 0.417, 0.467, 0.559, and 0.622, respectively. This
result shows that the R2 value increases with the window size.
In the current study, the size is set to 10 frames, and finding the
optimal size is left as a future work.

Determining state transitions: The system determines the state
to transit, i.e., No-Skipping, 1-Skipping, or 3-Skipping, from the pre-
dictions of similarity scores, i.e., EPS(fN , fN+1) and EPS(fN , fN+3).
It uses separate threshold values (or scaling factors), τ1 and τ3, to
look for the opportunity to skip either one frame or three consecu-
tive frames, respectively. The system compares EPS(fN , fN+1) and
EPS(fN , fN+3) with respect to τ1 and τ3. If EPS(fN , fN+1) is not
greater than τ1, no frame skipping takes place, and the system shifts
to No-Skipping state. If EPS(fN , fN+1) is greater than τ1, it further
checks EPS(fN , fN+3)with τ3. If EPS(fN , fN+3) is also greater than

Figure 12: Comparison between the ground truths and the predicted values of SSIM(fN , fN+1) in Candy Crush Soda Saga (Left)
and Archery Master 3D (Right). In total, ∼50,000 frames were recorded. For brevity, predictions up-to 3000 frames are shown.

τ3, it skips 3 frames and moves to 3-Skipping. Otherwise, it moves
to 1-Skipping while skipping only one frame.

Determining scaling factors: A raw SSIM score of greater than
0.97 indicates a strong level of similarity between two images in mo-
bile games [22]. Since our concept of predicting perceptual similar-
ity thrives on the scale of actual SSIM scores, we look for threshold
values between 0.97 to 1.

Figure 12 shows the comparison between the ground truths, i.e.,
SSIM(fN ,fN+1) and the predicted similarity scores, i.e., EPS(fN ,
fN+1) over two game-play scenarios. We simulated game-play sce-
narios with an oracle (Section 7.1), which replays identically the
recorded game-plays of gaming apps. The predictions were more
accurate within the potential range of threshold values (> 0.97)
than below it. This implies that the selection of threshold values
in the range would result in inclusion of the areas in which EPS
potentially makes correct skipping decisions; that is, it is likely that
decisions to skip frames would be made (e.g., EPS(fN , fN+1) > τ1)
when the SSIM values are in reality greater than 0.97.

Tomaintain quality user experiences, the determination of thresh-
old values should reduce potential of wrong skipping (or state tran-
sition) decisions, i.e., skipping decisions should not be made when
no skipping should occur in reality. This means that the decision
on the similarity assessed by EPS should be consistent with that
made by SSIM:

EPS(fN , fN+1) > τ1 only if SSIM(fN , fN+1) > 0.97
EPS(fN , fN+3) > τ3 only if SSIM(fN , fN+3) > 0.97

The errors in making state transition decisions could cause sig-
nificant loss in user experience. We experimented with different
threshold values in our lab environment in the range of 0.97 to 1
and figured out τ1 and τ3 which best satisfy the above conditions.
The system also provides users with a UI to customize the selection
of the scaling factors on their own as shown in Figure 15.
To assess the frequency of false skipping decisions, we looked

into the cases when a given threshold value is lower than predicted
EPS (i.e., a skip decision occurs) but higher than actual SSIM (i.e.,
not to be skipped in reality). As for 1-Skipping transitions, the false
decisions accounted for 4.1% of the total 1-Skipping transitions

when τ1 is set to 0.97. In the case of 3-Skipping with τ3 set to 0.97,
27% of the total 3-Skipping transitions were false. To reduce the
number of the false decisions, we increased the threshold values. To
be conservative with user experiences, the 90th percentile of the EPS
which makes the false skipping with threshold values set to 0.97 is
taken as the revised values. For example, τ3 is set to 0.9945, which is
the 90th percentile of the EPS(fN , fN+3) such that SSIM(fN , fN+3)
≤ 0.97 and EPS(fN , fN+3) > 0.97. The ratio of false transitions with
this new value is reduced to 2.7%

5 CLONING THE PRIMARY DISPLAY
In this section, we describe why and how RAVEN clones the primary
display of an Android device into a small virtual display.
The processes of graphics and display on Android could be

viewed from two perspectives, i.e., that of apps and that of sys-
tem display. In its rendering loop, a gaming app draws its game
frame on EGLSurface using OpenGL ES. From the system’s view,
each frame is stored as Surface in a graphics memory area. The dis-
play process is initiated by SurfaceFlinger. It takes the Surface
from each app or UI object as a display layer. When a VSYNC sig-
nal arrives, SurfaceFlinger arranges display layers from multiple
applications or UI objects for the primary display output. Usually,
Hardware Composer composes all the collected graphics buffers
(or layers) and sends the result to the primary display.

A simple approach to read a rendered game frame is to intercept
and read it from an app’s EGLSurface upon its generation. However,
this approach has a limitation; an access to EGLSurface occurs in
a blocking fashion, and would cause the whole rendering pipeline
to be delayed. Moreover, it contains a frame in its full-resolution
(in the case of Nexus 5X, 1920×1080), which is heavy to process
for 60 times per second. According to our preliminary experiment,
reading a single frame from an EGLSurface takes 0.49 seconds on
average. Thus, this approach could be performed for less than 3
frames per second, and is not feasible to match usual frame rates.
A different approach would be to read it from a (display) frame

buffer (e.g., /dev/graphics/fb0). It is well-known and has been
used in other works [27]. However, recent Android OS versions do
not allocate display frame buffers[10].

Figure 13: Total system power consumption according to the
resolution of a virtual display (width×height; None implies
no virtual display), measured with Candy Crush Saga.

(a) Correlation between SSIM at 1080p and Y−Diff at 45p.

(b) Correlation between Y−Diff at 1080p and Y−Diff at 45p.

Figure 14: 80×45 resolution and 1920×1080 resolution are
nearly identical in (a) SSIM and (b) Y−Diff (Best viewed in
color).

RAVEN leverages the virtual display of Android. A virtual display
could be allocated and maintained by SurfaceFlinger and used to
side-track the screen data for various purposes, e.g., screen sharing
or capturing. Upon generation, HWC fills up the virtual display while
it composes the display for the physical screen. While allocated sep-
arately in graphics memory, the overhead to compose its content is
small because it piggybacks the process of physical screen composi-
tion. As mentioned earlier, HWC also reduces the buffer-composition
overhead.

The overhead of a virtual display is primarily proportional to the
resolution of the display. In Figure 13, we show the total system
power while running FrameDiff Tracker with different virtual
display resolutions. It indicates that using the resolution of 80×45
can effectively reduce the energy overhead. From extensive trials

Type Component LoC
Java based System

Service
Rate Regulator 570

Native C/C++ based
System Service

Frame Difference Tracker 847

OpenGL/ES Rate Injector 161

Table 1: RAVEN’s code breakdown for AOSP modification.

with different resolutions, we figured out that the resolution of
80×45 for the virtual display is optimal for attaining minimum
energy overhead while preserving the performance. The Y−Diff
results with 80×45 and 1920×1080 are nearly identical with the
selected game-play data, scoring a 0.9989 Pearson’s correlation
coefficient, as shown in Figure 14.

6 IMPLEMENTATION
We have implemented a prototype of RAVEN as a system service
by customizing Android (AOSP) 6.0.1 upon Google Nexus 5X. The
implementation is in C++ and Java, consisting of 1,578 lines of code
in total as shown in Table 1.

Rate Injector: To inject a delay into the rendering loop of a game
app, eglSwapBuffer() function in OpenGL/ES is modified, so that
it lets the rendering loop sleep and adjust the frame rendering rates.
For this, a sleep() function call is inserted right after submitting
the rendered frame, stored in EGLSurface, to BufferQueue. (See
Figure 4, Section 3.) The sleep duration is decided by considering the
time for the next rendering (after skipping renderings), Tr , decided
by Rate Regulator and the estimation of a rendering duration Dr ,
i.e., Tr - Dr . The rendering duration can be estimated by capturing
the system times at the end of a sleep and at the completion of the
next round rendering.
The three major components are implemented in different pro-

cesses, i.e., Rate Injector as a part of the game app process, and
Rate Regulator as well as FrameDiff Tracker as parts of sys-
tem services, requiring a medium for inter-process communication.
Current implementation uses a UNIX Local Socket.

FrameDiff Tracker: As mentioned, SurfaceFlinger service is
used to clone the primary display, which offers the concept of a
virtual display [10]. In reality, SurfaceComposerClient is used,
which acts as an interface for SurfaceFlinger since FrameDiff
Tracker and SurfaceFlinger are in different processes. Surface-
ComposerClient calls createDisplay() function to create a vir-
tual display as a newly allocated Surface.

To access thus constructed virtual display, FrameDiff Tracker
also creates a new BufferQueue to connect to the Surface, i.e.,
the virtual display. Thereafter, FrameDiff Tracker can extract the
cloned frames from the Surface successively. The RGB values in
the frames are converted into Y−values.

FrameDiff Tracker utilizing the virtual display faces a slight
delay in tracking the most recently rendered frame. Upon rendering
a frame, it needs to be composed by the SurfaceFlinger, and thus,
would not yet be available to FrameDiff Tracker. The rendering
time of a frame usually overlaps with the display composition time
of its previous one. We currently use the most recently composed
frame from the virtual display for similarity prediction. This could

Figure 15: Screen-shot of RAVENConfig, an app to scale thresh-
old values. If τ3 is moved leftward, frame rates from GPU
will lean more towards 15 FPS. Users are also provided with
a switch to enable or disable RAVEN to tune the rates or keep
the original rates following developer’s intention.

incur some errors but within an acceptable range. Our measure-
ments show that the errors were negligible. A better approach
would be to slightly tune the regression model in Equation 1.

RAVENConfig:We implemented RAVENConfig, an app for person-
alized configuration. Figure 15 shows the layout of the RAVENCon-
fig. It allows users to tune the RAVEN parameters according to their
own subjective perception on the degree of experience degradation
caused by the system. The users are allowed to change the threshold
values (τ1 and τ3) to inject different rates of game-frame renderings
to their game-play. For instance, tuning τ3 below 0.997, will result
in a more frequent usage of the 15 FPS mode, which may affect the
user experience in return of higher energy savings. In Section 7,
we evaluate the impact of tuning the threshold values with two
cases, denoted as PAS and PAS++. PAS++ acts more aggressively to
save energy, i.e., it enforces 3-skipping more often than in PAS. PAS
sets τ1 to 0.9975 and τ3 to 0.9993. PAS++ uses 0.975 and 0.9983 for
τ1 and τ3.

7 EVALUATION
We evaluated the performance of RAVEN in terms of video qual-
ity scores, amount of skipped frames, energy savings in different
settings (i.e., PAS and PAS++), and system overheads. We also ex-
plored RAVEN’s impact on user experiences with two rounds of user
studies.

Game Apps used for Experiments.We selected 13 commercial
game apps with various graphical characteristics for the evaluation.
They are grouped into three categories based on their graphics
design and game mechanics: (A) Static, (B) Dynamic, and (C) Hy-
brid group. The static group includes puzzles and board games (e.g.
Solitaire), which are mainly turn-based games that utilize simple
graphical effects for visual feedback. The dynamic group consists
of games that have continuous graphical changes (e.g. racing games).
The games that belong to the hybrid group mostly have turn-based
flows with clear separation between two phases: the input and the
response phase. The input phase tends to be graphically static while

PAS PAS++ 30 FPS

Game VMAF SSIM VMAF SSIM VMAF SSIM Type

Perfect Piano 99.98% 99.87% 99.47% 98.65% 99.77% 98.89% A
Solitaire 99.94% 99.92% 99.68% 99.71% 99.06% 99.57%

Cookie Run 99.92% 95.60% 99.89% 95.45% 90.35% 94.30% B
Crossy Road 99.96% 98.24% 99.65% 98.00% 78.87% 90.29%
Race the Traffic Moto 99.76% 98.21% 99.42% 97.91% 87.81% 93.33%
Subway Surfers 99.94% 99.71% 99.70% 99.45% 79.46% 87.50%

Angry Birds 99.80% 99.40% 98.85% 99.08% 97.31% 98.44% C
Archery Master 3D 99.94% 98.23% 99.01% 97.40% 95.12% 95.60%
Candy Crush Saga 99.93% 99.09% 99.56% 98.85% 99.09% 98.74%
Candy Crush Soda Saga 99.97% 99.11% 99.46% 98.44% 98.50% 97.93%
Criminal Case 99.71% 99.33% 99.32% 99.07% 97.74% 98.40%
Cut the Rope 99.86% 99.12% 99.81% 98.51% 98.87% 98.57%
Surgery Simulator 99.96% 99.63% 99.70% 99.24% 99.41% 99.14%

Table 2: Video quality scores in percentage, higher is better.
A, B, and C represents respective game types.

displaying basic UI objects. The response phase incorporates dy-
namic, graphically intense visualizations without user interactions.

7.1 Objective Quality Assessment
To measure the number of skipped frames and to understand its
effect on visual quality across different settings, identical game-play
data should be provided for each measurement. Since gaming apps
are non-deterministic in their nature, we first recorded game-plays
at 60 FPS (for three minutes each) and then extracted each frame
as an image from the recorded game-play videos. Thereafter, we
applied the perception-aware rate scaling logic on the extracted
image sequences, and re-encoded the resulting image sequences as
separate videos for the assessment. For comparison, we also pre-
pared constant 30-FPS scenarios; for this, we generated videos by
re-encoding the image sequences, constructed by skipping alternate
images from the original sequences.
We evaluated the performance of RAVEN using objective video

quality metrics. The metrics give video quality scores which col-
lectively indicate perceptual similarity across a sequence of frames
from a video. We measured video quality scores for two different
frame rendering rate scaling policies (PAS and PAS++) as well as for
the constant 30-FPS setting. We used two objective video quality
metrics: SSIM, and VMAF[11]2.

Table 2 presents the results of the video quality assessment. The
results show that PAS and PAS++ achieve high video-quality scores,
which means they do not make significant perceptual differences,
compared to the original 60 FPS game-play videos. Also, in each
case, PAS and PAS++ produce better results than 30-FPS. In the case
of the games in the Static and the Hybrid groups like Criminal
Case, Cut The Rope, Candy Crush Saga and Angry bird, 30-FPS
also performs decently. On the other hand, for the games in the
Dynamic group like Crossy Road and Cookie Run, both PAS and
PAS++ scored notably higher, compared to 30-FPS. This indicates
that 30-FPS would cause more negative impacts on human visual
perception. Figure 16 shows the proportion of the different skipping
states that the RAVEN system applied in the re-composed videos.
2Unlike SSIM which can give per image based similarity score, VMAF is a newly
introduced state-of-the-art video quality metric which gives video quality score across
a video stream. It shows a better correlation with device specific Mean Opinion Score
(MOS).

Figure 16: Comparison of PAS and PAS++ in terms of frame skipping (Best viewed in color).

Figure 17: Percentage of energy savings while playing each game for 3 minutes (averaged on five repeated measurements).

In 7 out of the 12 cases, PAS++ skipped as many frames as 30-FPS
setting while achieving better video quality scores.

7.2 Energy Saving
We measured energy consumption on Nexus 5X running our cus-
tomized Android (AOSP) 6.0.1 with a Monsoon Power Monitor[7].
We configured the device brightness to 30% and activated the air-
plane mode except for Cookie Run which requires a network con-
nection. To prevent CPU/GPU throttling caused by overheating,
we ensured that the devices were cooled before each measurement.

We evaluated and compared the energy consumption of four
settings: Stock is the baseline setting that uses the stock Android,
which does not change frame rendering rates. 30-FPS, PAS++, and
PAS are the same as described above. The evaluation covers 8 game
apps, including at least one game from each game category to
reflect various gaming behaviors. For each game app, we tried to
repeat the same play (or interaction) sequence for measurement. We
measured the energy consumption for three minutes, and recorded
the average after repeating the session five times.

Figure 17 shows the proportion of energy savings in each setting
compared to Stock. PAS does not save substantial amount of energy

in the games that show continuous movements of characters or
changes of scenes such as Cookie Run, Archery Master 3D, and
Crossy Road. Except those games, PAS saves at least half the amount
of energy saved by 30-FPS. PAS++ saves at least 10% more energy
than Stock. Notably, PAS++ saves 5% more energy than 30-FPS in
Solitaire since there are many perceptually similar frames as seen
in Figure 2 (Section 2).

7.3 System Overhead

Energy overhead: We measured the energy overhead of RAVEN
under the same experiment configurations as in Section 7.2 while
playing Candy Crush Saga. The measurements were performed
for each major component of RAVEN, namely FrameDiff Tracker,
Rate Regulator, and Rate Injector. In total, the RAVEN system
consumes 173 mW in average. This accounts for only 8% of total de-
vice power consumption (2186 mW) while playing the game. 96% of
total energy overhead (165.5 mW) is taken by FrameDiff Tracker
for managing a virtual display and calculating Y−Diffs from it. The
other components consume negligible amounts of energy (3.7 mW
by Rate Regulator and 3.9 mW by Rate Injector), since they
are engaged in light-weight computations.

Figure 18: Times taken for frame read and comparison in
the games Candy Crush Saga, and Cut the Rope (combined).

Application overhead: Since RAVEN requiresmodifications in egl-
SwapBuffer() function, it could incur extra overhead in the ren-
dering thread of gaming apps. We measured the processing time
of RAVEN’s code block in the eglSwapBuffer() function. The code
block takes only 4.88µs on average. Thus, RAVEN does not impose
significant overheads to the rendering threads of game apps.

Frame reading and comparison overhead: The bottleneck of
RAVEN’s processing pipeline lies in reading frames and calculating
Y−Diffs by comparing them. We measured the time taken to read
each frame and to compute Y−Diff between two frames for all
gaming apps. Figure 18 shows the results with two games.

7.4 User Study
To explore the impact of RAVEN on user experiences, we conducted
a user study with 12 participants (7 males and 5 females are re-
cruited, all were in the ages from 20 to 30). To assess the game-play
experience, we used Double Stimulus Impairment Scale(DSIS) and
Double Stimulus Continuous Quality Scale (DSCQS), which are
widely used as specifications for quality assessment of systems
[2][27].

DSIS uses a discrete five-point impairment scale in two variants,
i.e., stimulus A and B. Both stimuli are sequentially presented to
each participant and the participant is asked to rate the quality of
each stimulus. The participants are informed of the device setting.
Unlike DSIS, DSCQS aims at assessing the differences in perceived
visual qualities among different device settings without informing
participants the setting of each task. Also, the order of the assess-
ment tasks is randomly arranged. This could mitigate potential
contextual biases (e.g. effects caused by the names of settings). The
participants score the perceived quality of each test setting on a
[0-100] scale.

DSIS: The participants were asked to play three games: 1) Cookie
Run, 2) Solitaire, and 3) Candy Crush Saga for 2 minutes each.
The participants are informed of RAVEN with PAS++ before the test.
Figure 19(a) shows the impairment rating result. Most of the partic-
ipants scored either “imperceptible” or “perceptible but not annoy-
ing” on all three games. However, some scored “slightly annoying”
with Cookie Run. Those participants observed slight stuttering
from repetitive movements of a character. The character stayed at
the same position and made short, repetitive movements, which

made even slight changes in the frame rendering rate noticeable to
the participants.

DSCQS: The participants were asked to play the same three games.
They played them for four sessions, three minutes each, with dif-
ferent FPS manipulation settings including 1) Stock (60-FPS fixed),
2) 30-FPS fixed, 3) PAS, and 4) PAS++. During each session, they
are allowed to play the game freely without game content-related
instructions. Figures 19(b) and (c) show the results. The participants
could not discriminate the tested settings against Stock. The dif-
ference in the scores between Stock and PAS++ was 4.5 points in
average, which could be considered as negligible.
The results above show that the RAVEN system provides similar

levels of user experience compared to the reference system, i.e.,
Stock. However, considering the diversity of mobile game apps and
their player groups, we plan to evaluate the systemmore extensively
over a broader set of games and participant groups.

8 RELATEDWORKS
dJay [25] utilized the concept of predictive SSIM-based approach to
dynamically tune client GPU rendering workloads in order to, first,
ensure all clients get satisfactory frame rates, and second, provide
the best possible graphics quality across clients. The system builds
a utility optimizer in the cloud gaming server which defines cost in
terms of GPU time and benefits in terms of graphics visual quality.
On the other hand, RAVEN is the first system which performs ren-
dering rate scaling on a commodity smartphone while maintaining
satisfactory user experiences.
Apogee [31] made a low-overhead pre-fetcher that adapts to

address patterns found in graphics memory. This approach reduces
the degree of multi-threading and thus, resulting in higher energy
efficiency. The whole process involves highly complicated process-
ing and needs access to GPU driver source code.

There was an effort to utilize the knowledge on display contents
on a screen [27][26]. The work used the RGB differences of the
contents and controlled the refresh rates from the display driver.
The approach incurs considerable deterioration in quality without
a touch-boosting technique, which enforces the refresh rates to the
maximum upon a touch event. On the contrary, RAVEN leverages
human perception by measuring perceptual similarity, and thus,
provides good performance without any extra hints like touch.

Vatjus-Anttila et al.[32] built a GPU power model based on three
render complexity characteristics 1) number of triangles, 2) ren-
der batches, and 3) addressed texels. It mostly focuses on relating
the power consumption to hardware events by observing hard-
ware performance counters of the GPU. Such techniques require
low-level hardware modifications and also cannot cope with dif-
ferent graphics designs of gaming apps. There have been several
other works on GPU power modeling [28][29][36], but most of
them targeted the concept of dynamic frequency scaling. Though
these techniques could be applicable on smartphones, they require
vendor-side modifications of GPU drivers.

The power consumption of display increases with its pixel bright-
ness [19][21] [24]. In recent years, vendors are exploring methods
to reduce power consumption by darkening the least important
contents on the screen [20]. On the similar note, Chen et al.[21]

Figure 19: Results from the user study.

introduced a software technique which could perform local dim-
ming for the screen areas covered by users’ fingers to save more
power, without compromising their visual experiences. Anand et
al.[19] and Dong et al.[24] utilized the brightness index of pixels to
save significant amounts of power while preserving image quali-
ties. Though these works are motivational, they are subjected to
external factors, e.g., lighting conditions. To the contrary, RAVEN’s
approach is independent of such external factors. Moreover, the
works focused more on power consumption rather than retaining
the quality of user experience.

Software plug-ins have been provided for desktop computers in
recent years [1][15][4][16], which attempt to optimize the rendering
power of a GPU. Such plug-ins transfer the information on their
graphics objects to the video cards (GPUs) and adopt Dynamic
Resolution Rendering [14]. Upon complex graphics contents, they
exert slow changes in resolution while trying to maintain high
frame rates.

9 DISCUSSION AND FUTUREWORK
As shown in Figure 17, there are cases where the PAS do not lead to
energy saving, e.g., Archery Master 3D. Such situations may occur
when a game scene continuously changes throughout the play, and
RAVEN does not skip frames. Those situations are not prevalent as
the design as well as the play of a game vary across its different
stages or sessions. While playing Archery Master 3D, we found that
there are cases in which RAVEN saved about ∼ 15% of energy with
the PAS setting. This shows that RAVEN is designed to understand
the importance of having a good game-play experience, and does
not try to greedily skip frames to achieve higher energy savings.

The current implementation has been built and tested on a Nexus
5X smartphone. We think that it would work on other modern
smartphones running latest versions of Android OS. As for GPUs,
RAVEN has been tested with an Adreno 418 GPU. More work needs
to be performed to see how much energy it saves on other types of
GPUs.

Hardware Composer(HWC) is a specialized hardware component,
generating the final frames for display on a screen. An idea to save
more energy would be to extend HWC to include parts or all of
perceptual similarity computation. This approach seems feasible

since it touches every frame to be displayed. With such extension,
tasks of FrameDiff Tracker can be offloaded to the HWC, which
incur 96% of total energy overhead.
We plan to continue to improve the current design and imple-

mentation to explore ways to further optimize power consumption.
A potential direction would be to develop a technique for resolution
scaling, which could be used in combination with the current ap-
proach. Also interesting is to build a tool, based on RAVEN, to assist
developers in optimizing power consumption of their gaming apps.

10 CONCLUSION
This paper presents RAVEN, a system for mobile gaming apps to
opportunistically save power consumption without degrading user
experiences. It introduces a new, on-the-fly perception-aware rate
scaling technique, which utilizes human visual perception of graph-
ics changes, and helps reduce power consumption by smartphone
GPUs. It develops a light-weight frame comparison technique to
measure and predict perception-aware frame similarity. It also
builds a low resolution virtual display which clones the device
screen for performing similarity measurement at a low-power cost.
It is able to work on an existing commercial smartphone and sup-
port applications from app stores without any modifications. The
experiments in the paper show that RAVEN saves up-to 35% of total
device energy consumption without causing any substantial user
experience degradation while playing mobile games.

11 ACKNOWLEDGMENT
We are thankful to our shepherd Prof. Robert LiKamWa and the
anonymous reviewers for their valuable comments and sugges-
tions that helped bring the paper to its current form. We would
also like to thank Joo Ho Lee for all the valuable discussions dur-
ing the writing of this paper. This work was supported by Basic
Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (2017R1A2B3010504) and the Ministry of Educa-
tion (2016R1D1A1B03930311).

REFERENCES
[1] 2017. Boost. http://www.hialgo.com/TechnologyBOOST.html. (2017). [Online;

accessed Aug-1-2017].
[2] 2017. BT.500 : Methodology for the subjective assessment of the quality of tele-

vision pictures. https://www.itu.int/rec/R-REC-BT.500-13-201201-I/en. (2017).
[Online; accessed Aug-1-2017].

[3] 2017. BufferQueue and gralloc. https://source.android.com/devices/graphics/
arch-bq-gralloc. (2017). [Online; accessed 7-July-2017].

[4] 2017. LucidLogix. http://www.lucidlogix.com/powerxtend/overview/. (2017).
[Online; accessed Aug-1-2017].

[5] 2017. Mali-G71 ARM GPUs. https://www.arm.com/products/multimedia/
mali-gpu/high-performance/mali-g71.php. (2017). [Online; accessed Aug-1-
2017].

[6] 2017. Mali-T760 ARM GPUs. https://www.arm.com/products/multimedia/
mali-gpu/high-performance/mali-t760.php. (2017). [Online; accessed Aug-1-
2017].

[7] 2017. Monsoon Power Monitor. https://www.msoon.com/LabEquipment/
PowerMonitor. (2017). [Online; accessed Aug-1-2017].

[8] 2017. Open CV. http://docs.opencv.org/2.4.13/. (2017). [Online; accessed Aug-1-
2017].

[9] 2017. Samsung Game Tuner. https://play.google.com/store/apps/details?id=com.
samsung.android.gametuner.thin&hl=en. (2017). [Online; accessed Aug-1-2017].

[10] 2017. SurfaceFlinger and Hardware Composer. https://source.android.com/
devices/graphics/arch-sf-hwc. (2017). [Online; accessed 7-July-2017].

[11] 2017. Toward A Practical Perceptual Video Quality Metric . http://techblog.
netflix.com/2016/06/toward-practical-perceptual-video.html. (2017). [Online;
accessed Aug-1-2017].

[12] 2017. YUV - Wikipedia. https://en.wikipedia.org/wiki/YUV. (2017). [Online;
accessed Aug-1-2017].

[13] February 11, 2013. Khronos Native Platform Graphics Interface. https://www.
khronos.org/registry/EGL/specs/. (February 11, 2013). [Online; accessed Aug-1-
2017].

[14] July 13, 2011. Dynamic Resolution Rendering Article. https://software.intel.com/
en-us/articles/dynamic-resolution-rendering-article. (July 13, 2011). [Online;
accessed Aug-1-2017].

[15] March 17, 2013. HiAlgoBoost. http://semiaccurate.com/2013/04/17/
hialgo-boost-for-far-cry-3/. (March 17, 2013). [Online; accessed Aug-1-2017].

[16] March 23, 2012. DynamiX, LucidLogix. http://semiaccurate.com/2012/03/23/
lucid-releases-dynamix-software/. (March 23, 2012). [Online; accessed Aug-1-
2017].

[17] May 12, 2009. OpenGL ES Common Profile Specification. https://www.khronos.
org/files/opengles_shading_language.pdf. (May 12, 2009). [Online; accessed
Aug-1-2017].

[18] October 29, 2012. The Truth About Cats and Dogs: Smartphone vs
Tablet Usage Differences. http://flurrymobile.tumblr.com/post/113379683050/
the-truth-about-cats-and-dogs-smartphone-vs. (October 29, 2012). [Online;
accessed Aug-1-2017].

[19] Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian, Pravein G. Kannan, Akhi-
hebbal L. Ananda, Mun Choon Chan, and Rajesh Krishna Balan. 2011. Adaptive
Display Power Management for Mobile Games. In Proceedings of the 9th Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys ’11).
ACM, New York, NY, USA, 57–70. https://doi.org/10.1145/1999995.2000002

[20] J. Betts-LaCroix. 2010. Selective dimming of oled displays. (June 17 2010).
https://www.google.com/patents/US20100149223 US Patent App. 12/538,846.

[21] Xiang Chen, Kent W. Nixon, Hucheng Zhou, Yunxin Liu, and Yiran Chen. 2014.
FingerShadow: An OLED Power Optimization Based on Smartphone Touch
Interactions. In Proceedings of the 6th USENIX Conference on Power-Aware Com-
puting and Systems (HotPower’14). USENIX Association, Berkeley, CA, USA, 6–6.
http://dl.acm.org/citation.cfm?id=2696568.2696574

[22] Eduardo Cuervo, Alec Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, Stefan
Saroiu, and Madanlal Musuvathi. 2015. Kahawai: High-Quality Mobile Gaming
Using GPU Offload. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’15). ACM, New York, NY,
USA, 121–135. https://doi.org/10.1145/2742647.2742657

[23] B. Dietrich and S. Chakraborty. 2014. Forget the battery, let’s play games!. In 2014
IEEE 12th Symposium on Embedded Systems for Real-time Multimedia (ESTIMedia).
1–8. https://doi.org/10.1109/ESTIMedia.2014.6962338

[24] Mian Dong and Lin Zhong. 2011. Chameleon: A Color-adaptive Web Browser
for Mobile OLED Displays. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’11). ACM, New York, NY,
USA, 85–98. https://doi.org/10.1145/1999995.2000004

[25] Sergey Grizan, David Chu, Alec Wolman, and Roger Wattenhofer. 2015. dJay:
Enabling High-density Multi-tenancy for Cloud Gaming Servers with Dynamic
Cost-benefit GPU Load Balancing. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 58–70. https://doi.
org/10.1145/2806777.2806942

[26] Dongwon Kim, Nohyun Jung, and Hojung Cha. 2014. Content-centric Display
Energy Management for Mobile Devices. In Proceedings of the 51st Annual Design
Automation Conference (DAC ’14). ACM, New York, NY, USA, Article 41, 6 pages.
https://doi.org/10.1145/2593069.2593113

[27] D. Kim, N. Jung, Y. Chon, and H. Cha. 2016. Content-Centric Energy Management
of Mobile Displays. IEEE Transactions on Mobile Computing 15, 8 (Aug 2016),
1925–1938. https://doi.org/10.1109/TMC.2015.2467393

[28] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S. Kim. 2011. Improving
Throughput of Power-Constrained GPUs Using Dynamic Voltage/Frequency
and Core Scaling. In 2011 International Conference on Parallel Architectures and
Compilation Techniques. 111–120. https://doi.org/10.1109/PACT.2011.17

[29] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling
Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). ACM, New York, NY, USA,
487–498. https://doi.org/10.1145/2485922.2485964

[30] Margaret S Livingstone. 2002. Vision and Art: The Biology of Seeing.
[31] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott Mahlke. 2013. APOGEE:

Adaptive Prefetching on GPUs for Energy Efficiency. In Proceedings of the 22Nd
International Conference on Parallel Architectures and Compilation Techniques
(PACT ’13). IEEE Press, Piscataway, NJ, USA, 73–82. http://dl.acm.org/citation.
cfm?id=2523721.2523735

[32] J. M. Vatjus-Anttila, T. Koskela, and S. Hickey. 2013. Power Consumption Model
of a Mobile GPU Based on Rendering Complexity. In 2013 Seventh International
Conference on Next Generation Mobile Apps, Services and Technologies. 210–215.
https://doi.org/10.1109/NGMAST.2013.45

[33] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[34] Yu Yan, Songtao He, Yunxin Liu, and Longbo Huang. 2015. Optimizing Power
Consumption of Mobile Games. In Proceedings of the Workshop on Power-Aware
Computing and Systems (HotPower ’15). ACM, New York, NY, USA, 21–25. https:
//doi.org/10.1145/2818613.2818746

[35] Semir Zeki. 1993. A Vision of the Brain. Blackwell scientific publications.
[36] Y. Zhu, A. Srikanth, J. Leng, and V. J. Reddi. 2014. Exploiting Webpage Charac-

teristics for Energy-Efficient Mobile Web Browsing. IEEE Computer Architecture
Letters 13, 1 (Jan 2014), 33–36. https://doi.org/10.1109/L-CA.2012.33

http://www.hialgo.com/TechnologyBOOST.html
https://www.itu.int/rec/R-REC-BT.500-13-201201-I/en
https://source.android.com/devices/graphics/arch-bq-gralloc
https://source.android.com/devices/graphics/arch-bq-gralloc
http://www.lucidlogix.com/powerxtend/overview/
https://www.arm.com/products/multimedia/mali-gpu/high-performance/mali-g71.php
https://www.arm.com/products/multimedia/mali-gpu/high-performance/mali-g71.php
https://www.arm.com/products/multimedia/mali-gpu/high-performance/mali-t760.php
https://www.arm.com/products/multimedia/mali-gpu/high-performance/mali-t760.php
https://www.msoon.com/LabEquipment/PowerMonitor
https://www.msoon.com/LabEquipment/PowerMonitor
http://docs.opencv.org/2.4.13/
https://play.google.com/store/apps/details?id=com.samsung.android.gametuner.thin&hl=en
https://play.google.com/store/apps/details?id=com.samsung.android.gametuner.thin&hl=en
https://source.android.com/devices/graphics/arch-sf-hwc
https://source.android.com/devices/graphics/arch-sf-hwc
http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html
http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html
https://en.wikipedia.org/wiki/YUV
https://www.khronos.org/registry/EGL/specs/
https://www.khronos.org/registry/EGL/specs/
https://software.intel.com/en-us/articles/dynamic-resolution-rendering-article
https://software.intel.com/en-us/articles/dynamic-resolution-rendering-article
http://semiaccurate.com/2013/04/17/hialgo-boost-for-far-cry-3/
http://semiaccurate.com/2013/04/17/hialgo-boost-for-far-cry-3/
http://semiaccurate.com/2012/03/23/lucid-releases-dynamix-software/
http://semiaccurate.com/2012/03/23/lucid-releases-dynamix-software/
https://www.khronos.org/files/opengles_shading_language.pdf
https://www.khronos.org/files/opengles_shading_language.pdf
http://flurrymobile.tumblr.com/post/113379683050/the-truth-about-cats-and-dogs-smartphone-vs
http://flurrymobile.tumblr.com/post/113379683050/the-truth-about-cats-and-dogs-smartphone-vs
https://doi.org/10.1145/1999995.2000002
https://www.google.com/patents/US20100149223
http://dl.acm.org/citation.cfm?id=2696568.2696574
https://doi.org/10.1145/2742647.2742657
https://doi.org/10.1109/ESTIMedia.2014.6962338
https://doi.org/10.1145/1999995.2000004
https://doi.org/10.1145/2806777.2806942
https://doi.org/10.1145/2806777.2806942
https://doi.org/10.1145/2593069.2593113
https://doi.org/10.1109/TMC.2015.2467393
https://doi.org/10.1109/PACT.2011.17
https://doi.org/10.1145/2485922.2485964
http://dl.acm.org/citation.cfm?id=2523721.2523735
http://dl.acm.org/citation.cfm?id=2523721.2523735
https://doi.org/10.1109/NGMAST.2013.45
https://doi.org/10.1145/2818613.2818746
https://doi.org/10.1145/2818613.2818746
https://doi.org/10.1109/L-CA.2012.33

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Graphics Processing on Android

	3 System Overview
	4 Perceptual Similarity and Regulation of Frame Rendering Rates
	4.1 Building a Perceptual Similarity Score
	4.2 Estimating Frame Rendering Rates

	5 Cloning the Primary Display
	6 Implementation
	7 Evaluation
	7.1 Objective Quality Assessment
	7.2 Energy Saving
	7.3 System Overhead
	7.4 User Study

	8 Related Works
	9 Discussion and Future Work
	10 Conclusion
	11 Acknowledgment
	References

