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Current in-situ privacy solution approaches are inadequate in protecting sensitive information. They either require extra
configuration effort or lack the ability to configure user desired privacy settings. Based on in-depth discussions during a design
workshop, we propose PrivacyShield, a mobile system for providing subtle just-in-time privacy provisioning. PrivacyShield
leverages the screen I/O device (screen digitizer) of smartphones to recognize gesture commands, even when the phone’s screen
is turned off. Based on gesture command inputs, various privacy-protection policies can be configured on-the-fly. We develop
a novel stroke-based approach to address the challenges in segmenting and recognizing gesture command inputs, which
helps the system in achieving good usability and performance. PrivacyShield also provides developers with APIs to enable
just-in-time privacy provisioning in their applications. We have implemented an energy efficient PrivacyShield prototype on
the Android platform, including smartphones with and without a low-power co-processor. Evaluation results show that our
gesture segmentation algorithm is fast enough for real-time performance (introducing less than 200ms processing latency)
and accurate (achieving an accuracy of 95% for single-character gestures and 89% for even three-character gestures). We also
build a non-touch-screen-based just-in-time privacy provisioning prototype called the wrist gesture method. We compare the
performance of the two prototypes by doing a 6-week field study with 12 participants and show why a simplistic solution
falls short in providing privacy configurations. We also report the participants’ perceptions and reactions after the field study.
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1 INTRODUCTION
Present day smartphones provide a gateway to a wealth of users’ private information, e.g., photos, videos,
text messages, and emails. To protect such private information, users use simple screen lock solutions like a
pass-code or a pattern lock. However, when users share their devices, in-situ, with people [29][34], e.g., close
friends or family members, they inadvertently put their private information at risk. They either become prey
to an information leaks from incoming message notifications which are promptly notified to the users via the
smartphone screen [38] or they find themselves in situations where they expose their photos to a person who is
gazing at the device screen to see a particular photo(s) [50]. In such cases, being snooped on by socially-close
people is a trespassing of one’s privacy in its most basic sense [37].

Current state-of-the-art privacy provisioning solution approaches (or methods) for preventing in-situ privacy
leaks involves on-screen [11][9] and off-screen [13] access to notification settings, or the use of multi-user modes
(or guest mode) [34][22][11][9]. However, these solutions/approaches have the following limitations. First, users
need to act fast to access a desired privacy setting, e.g., sliding (or browsing) the notification pop-up setting and
clicking some buttons to configure notification settings or selecting one of the user profiles (guest mode) and
specifying them with permissions to access specific data. Given the need to act swiftly, configuring such privacy
settings in-situ is difficult in front of an observer. Second, the guest mode find its limitation in cases where the
device owner wants to show some photographs from a set of photographs. The user uses her own profile to show
images which could result in some private contents getting leaked to the borrower or sharer. Such limitations call
for additional efforts in providing adequate defense against socially-close adversaries [32], and that too, without
compromising device usability.
This paper breaks away from the traditional approaches to configure in-situ privacy settings, and explores

an alternative system, PrivacyShield, which is rooted in providing subtle just-in-time privacy while achieving
usability. To this end, we first address the notion of subtle just-in-time privacy provisioning, which means
configuring a privacy setting on a user desired information content by replacing the default approach of content
hide with an indirect and swift approach. We do not argue that such an approach itself is always performed
in a surreptitious way, although it might be the case in some situations. By leveraging the screen I/O device
(screen digitizer) of smartphones, PrivacyShield first recognizes on-screen gestures that users perform even while
a phone’s display is turned off. If done well, it passes the recognized gestures as gesture queries to instantly
change user profiles or the system’s privacy modes according to the performed gestures. As the display is off,
the phone owner can pro-actively hide, e.g., pictures, notifications or kill apps, before lending or screen sharing
her device. The borrower or a nearby person may not see (be aware of) what information content the owner is
hiding. Users may also use gestures to subtly configure dynamic rules, e.g., hiding message notifications from the
WhatsApp app from a particular sender(s). To do so, the system facilitates individual policies associated with a
gesture query. PrivacyShield also provides an Application Programming Interface (API) for smartphone apps to
achieve selective hide functionality for their data and thus better balance their privacy and usability.

A key challenge in achieving subtle just-in-time privacy provisioning using PrivacyShield is to segment gesture
inputs (or commands) from the screen digitizer in an accurate, fast, and energy-efficient way. Gesture commands
in PrivacyShield consist of multiple inputs made with touch gestures, each representing an action or a query. For
example, assume that a touch gesture consists of an action followed by a sequence of two characters as parameters
“ab”. Segmenting such a sequence of touch-gestures with multiple inputs is very challenging because 1) there
is no visual feedback, as the display is turned off, and therefore 2) multiple gestures can easily get overlapped,
as users are not expected to draw them considering per-gesture-input timeout. 3) Some gestures may consist
of multiple strokes such as “i” and “t”, which, if not segmented properly, make existing gesture-recognition
approaches provide the wrong output. 4) Since PrivacyShield needs to always listen for touch inputs, there will
be multiple cases of accidental CPU wake-ups (resulting in energy drain) from accidental touches.
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To address the above challenges, we propose a novel stroke-based gesture-segmentation-and-recognition
approach. First, we differentiate single-touch and multi-touch as a part of primary segmentation. Second, for
segmenting the character gesture(s), we compute their stroke features. We separate a coordinate stream into a set
of strokes and examine whether each stroke is for a single character or a part of the character (e.g., “.” in “i”). If a
given stroke is for a part of the character, it is merged with the subsequent stroke. We recognize the character by
matching each segmented stroke (or two consequent strokes) with the pre-built templates. To provide just-in-time
privacy protection, the approach accelerates the process of gesture segmentation. While a user is drawing the
gesture on the screen, it instantaneously processes the segmented stroke(s), i.e., character-by-character.
We further optimize PrivacyShield to provide an energy-efficient solution against accidental touches which,

in turn, causes the CPU to process touch inputs. To this end, we leverage low-power co-processors and a
proximity sensor to determine when to process touch events and interrupt the CPU. PrivacyShield first detects a
smartphone’s position with the proximity sensor and then enables Android’s touch events processing only when
the smartphone is outside, e.g., device owner’s pocket.

The design of PrivacyShield has been conducted through an online questionnaire and a focus group study. We
designed a mock-up PrivacyShield system, and further crafted the design of PrivacyShield through a design
workshop with fifteen participants who frequently came across device borrowing and screen sharing situations.
We have implemented the PrivacyShield system and its segmentation-and-recognition algorithm on commercial
smartphones. Experimental results show that the algorithm enables high recognition accuracy. More specifically,
the segmentation accuracy is 95% and 89% for 1-character and 3-character gestures, respectively. The recognition
accuracy (after segmentation) is 87% and 74% for 1-character and 2-character gestures, respectively. The
recognition is performed within 200ms (at most), which enables just-in-time provisioning. We further performed
extensive experiments to measure the usability of PrivacyShield by doing a 6-week system deployment study. We
also implement the wrist gesture method, an alternate energy efficient and simple non-touch-screen-based subtle
just-in-time privacy provisioning approach. We compare the alternate approach with PrivacyShield in relation to
in-situ usability, flexibility, and accessibility to perform gesture inputs, and show why a simplistic solution falls
short in providing a privacy configuration. Overall, our findings include the effectiveness of PrivacyShield in con-
figuring subtle just-in-time privacy, the satisfaction of using PrivacyShield, the ability of the system tomake people
perform required gestures in a subtle way, and more importantly, participants’ perceptions on using PrivacyShield.

The following are our main contributions:
• We conducted a design workshop with fifteen participants to establish design requirements for crafting the
PrivacyShield system. §2.

• We conceptualize, propose, and design the PrivacyShield system for providing subtle in-situ just-in-time
privacy option on mobile devices. §4.

• We develop a new algorithm for accurate, fast, and low-power gesture segmentation. §6.
• We implement the PrivacyShield system on commercial smartphones and build and customize example
apps using the system API. §8 and §9.

• We conduct comprehensive experimental evaluations and report the results. §10 and §11.

2 DESIGN STUDY
To design a just-in-time privacy provisioning system, we conducted a design study consisting of two phases:
an online survey and a design workshop. The goal of the first phase was to explore individual’s perception of
current privacy solutions. We set a motivating scenario and analyzed online feedback from 80 participants. In the
second phase, we recruited 15 participants and performed a design workshop to extract design considerations.
All user studies in the paper were conducted under IRB approval.
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Table 1. Participants’ demographics from the online survey.

Gender Male (54), Female (26)
Age 16-20 (3), 21-25 (24), 26-30 (37), 31-35 (16)

Occupation Bachelor’s degree (35), Master’s degree (23), Doctorate degree (22)
Ethnicity Chinese (26), Korean (25), Indian (10), Mongolian (7), Others (12)

2.1 Motivating Scenario and Online Survey

ExampleMotivating Scenario. Sam recently had a vacation trip with his family members where he took several
photographs with his smartphone. After coming back from the trip, he is now working on his project assignment
using his laptop. Alongside, Sam is also using the desktop version of a smartphone based Instant Messaging (IM)
app to talk to his friends. A moment after, Sam’s mother asks him for his phone to see some photographs from
their vacation trip. Sam is now uncomfortable that his personal photographs and the message-pop-ups from
the IM app may reveal his secret information. Another day, Sam is attending a meeting with his client at a cafe.
While showing some project details on his laptop he gets a message from his school friend with whom he was
chatting while walking to the cafe. He realizes that the message was also seen by his client when the notification
popped-up on the phone as it was lying on the table and was close enough to the client. In this case, Sam wants
to hide further message notifications from his IM app but does not want to miss any messages from his boss.

In order to explore in-situ privacy control in above scenarios, we conducted an online user survey. We posted a
recruitment flyer to online community sites of students and staff at our university. We recruited 80 participants
from 11 countries (see Table 1). Participants were shown a scenario video to help understand the motivating
scenario. The key questions in online survey included: Q1) “Which privacy settings(s) do you use for preventing
information leak in such situations?”, Q2) “How often do you come across such situations?”, Q3) “Are you satisfied
with the effort required in choosing a privacy option from the app or device’s privacy setting?”, and Q4) “Are you
satisfied with the available privacy options in the app or device’s privacy setting?”

As shown in Figure 1, 17 people (25%) did not consider the scenario as privacy threatening. 14 participants out
of 17 belonged to the age group of 31-35. The remaining 3 participants were in the age group of 26-30. Thus, such
privacy threatening situations are more common in the age group of 16-30. For the rest 63 people, 18 people
(36%) used notification Hide/Silent for their app, Figure. 15 people (30%) mentioned that they categorized their
photographs under public or private using a third-party app. 17 people (34%) used both settings to hide their
information. 13 (21%) participants chose to “make excuses and keep the device under possession” to prevent
information leak.
Regarding occurrences of privacy threatening situations in participants’ daily life. 12 people (19%) out of 63

participants faced privacy situations “At least once a day”. 17 participants (27%) experienced such situations
“At least once a week”, while the rest 34 participants (54%) do not come across such situation quite often. 22%
came across such situations “At least once a month” and the rest 32% encountered such situations “At least once
a year”. The result shed light on the fact that such device borrowing or screen sharing scenarios occur quite
frequently in some cases.
For the participants who used their respective privacy settings (50 out of 63 participants, i.e., excluding 13

participants who “make excuses and keep the device under possession”), we asked them to rate their satisfaction
on 1) effort required in choosing a privacy option and 2) available privacy options in their app or device’s privacy
setting on a 6-point Likert scale – strongly dissatisfied – dissatisfied – slightly dissatisfied – slightly satisfied –
satisfied – strongly satisfied. Figure 2 shows the distribution of satisfaction level across all 50 participants. Most
responders were not satisfied with the effort required in choosing privacy options. As shown in Figure 2 (Left),
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Fig. 1. Privacy Settings. X-axis represents no. of participants.
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Fig. 2. Participants’ response distribution of satisfaction level. (Left) Effort required in choosing privacy options. (Right)
Available privacy options. Note that we did not receive any responses corresponding to “Strongly satisfied” option.

44 participants (88%) out of 50 chose from “Strongly dissatisfied” ∼ “Slightly dissatisfied”. 6 participants were
(slightly) satisfied with the effort required to configure a privacy option.

Majority of the participants, 38 out 50 (76%), were not satisfied with the available privacy options, Figure 2
(Right). 13 people (26%) were the ones who came across such privacy situations frequently in their daily life, i.e.,
from the option sets: “At least once a day” or “At least once a week”. 9 people from the same sets chose that they
were either “Satisfied” (1 person) or “Slightly satisfied” (8 people) with their privacy-provisioning options. From
the remaining 28 people who belonged to the opinion sets “At least once a month” or “At least once a year”, 25 of
them (50% of the total participants) were not satisfied with the privacy options, while the other 3 participants
were “Satisfied”. An interesting fact which we found from the collected data was that the 6 participants who were
(slightly) satisfied with “effort required in choosing privacy options” were also (slightly) satisfied with “available
privacy options in their app or device’s privacy setting”.

2.2 System Design Workshop
To educe the design considerations of PrivacyShield, we conducted a focus group discussion with fifteen survey
participants. 9 participants were from three groups (3 participants in each group): a) who did not use privacy
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provisioning settings, but frequently came across situations involving device borrowing or screen sharing (PAX ),
b)who did not use privacy settings frequently (PBX ), and c)who already were (slightly) satisfied with the existing
privacy options and with the effort required to configure privacy options (PCX ). Rest 6 participants were ones
who frequently used existing privacy-provisioning settings under device sharing situations but were not satisfied
with the effort required to configure privacy options and available privacy options (PDX ). We wanted to open the
possibility of collecting a broader range of responses and implications of PrivacyShield for potential service to
people with different usage rate of privacy-provisioning.
For the system design workshop, we built a mock-up PrivacyShield system. It is a working system providing

basic swiping gestures that can hide message notifications and pictures from the gallery applications. The
system provides gesture swiping functionality over a custom lock screen app. In the beginning, we provided the
participants with a short tutorial about our notion of just-in-time privacy provisioning, demonstrated using the
mock-up system, and let them freely use the mock-up system. We then conducted a three-hour semi-structured
focus group discussion. The discussion was audio-recorded and transcribed, and the transcripts were analyzed
individually by four researchers in our group. All participants finally reached a consensus on the high-level
themes of the discussion [49]. The key questions were: “How do you configure a privacy setting in front of an
observer?”, “What do you expect from the basic system design, which if fulfilled, will make you use the system around
an observer?”, and “What difficulty would you expect to face while performing just-in-time privacy provisioning
around an observer?” As an incentive, each participant was additionally rewarded with a $10 gift card.

Unavailability of easy in-situ selective hide option to information. Most participants commonly stated
that usability is the primary limitation associated with hiding message notifications or photos with PrivacyShield.
In fact, participants PA1 PA2, and PA3 mentioned that they did not use existing privacy settings because there are
some difficulties in information accessibility. PA2, PB3 reported that applying a message hide option typically
blocks all the notifications. PD1 mentioned: “Even though I would be able to apply the message hide option, it
deprives me from viewing message contents from the other important notifications.” PD3 stated: “Upon activating
notification hide, I would be checking each message every time I get one. The problem is very serious considering
the frequent daily usage of mobile messaging.” Most of the participants mentioned that in the current mobile
messengers, users should choose either privacy or usability, and sacrifice the other.
Participants who used external photo album apps showed concerns with the current PrivacyShield system

design. PD1, PD2, and PB1 were worried about situations when they are browsing or screen sharing for showing
a particular photo(s). PA1 stated: “We’re a young couple, we take personal pics. We have many members in our
family, they all love seeing the amazing pictures from my phone. [Well] personally speaking, and as well as on behalf
of my family, nobody wants to be looking through my pictures and saying: ohh this is a nice scenery you got there
behind you, and then, oops! I think I stepped in the wrong place.”
Participants proposed to make PrivacyShield pass “hints” through gesture input. PA3 questioned: “May be it

would be better to convey our thoughts to PrivacyShield regarding hiding notification (or photos) from (of) a particular
person?” Ideally, participants wanted those hints to convey the need of privacy configuration on a particular
person’s photos or messages. Some participants suggested to have multiple pre-defined profiles associated with
gestures but many opposed to it as maintaining profiles sounded difficult to them. PD3 mentioned: “I don’t know
whether a couple of profiles is enough. But I feel I need more gesture rules as time goes by.” PB2 further mentioned:
“It will require some [thinking] effort to manage several profiles as I need to imagine who I will be meeting tomorrow.”

Difficulty in subtly configuring just-in-time privacy options. While participants liked the idea of using
gesture functionality, some were curious on using back-of-the device concept [24] for swiftly hiding information
instead of using on-screen gestures. With further discussion among the participants, it became clear to them that
many times they will not have the option to pick their phones to input gestures. PD2 mentioned: “I always keep
my phone on the table, and may like to activate notification hide without picking the phone.” To this, PD4 suggested:
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“PrivacyShield should also be able to trigger any privacy configuration(s) without turning on the device screen. It
would look like finger scribbling and could be deceptive to the person around.”

Need for functional extension. Some participants enthusiastically suggested PrivacyShield to allow them to
launch gesture functionality on top of any foreground app instead of launching it from the lock screen. PD5 said:
“Sometimes I and my friend read articles on the web together. It would be annoying if I need to interrupt our reading
and go through all the steps to launch the lock screen.”

Applicability of PrivacyShield to users who are satisfied with current privacy-provisioning settings.
Participants PC1, PC2, and PC3 always used the current privacy-provisioning settings. They always had their
message notification hide option activated. PC4 mentioned: “Since I frequently come across privacy threatening
situations, I always tend to keep a particular privacy setting.” Although, PC1, PC2 agreed that PrivacyShield would
be a much flexible option and that they want to try the system. Their feedback strengthened our target user base.
We design PrivacyShield to target people who desire usability while achieving privacy.

2.3 Summary

Online user survey and focus group discussion. The results indicate that people are concerned about privacy
leaks from message notifications and accidental snooping through their personal photographs. They take various
measures to prevent information leaks whenever they find themselves in device- or screen-sharing situations.
Such measures, though, make them sacrifice either privacy or usability. Moreover, since such situations are
sporadic in nature, therefore users are not able to use their current privacy-provisioning approaches swiftly,
selectively, flexibly, and readily.

Design study limitation and scope of PrivacyShield. The online user survey and system design workshop
was done with a small population size consisting of university students, leading to bias in their understanding of
mobile device usability, privacy, and security issues. However, we believe that the results obtained still have merit
as they represent views from different ethnicities and age groups. Thus far, the current version of PrivacyShield
is oriented towards people with a fair amount of dexterity and mental agility. It also targets people who have a
lot of experience with mobile devices.

3 EXAMPLE USE CASES AND THREAT MODEL
We envision two types of use cases based on the findings from the design workshop: subtle-privacy-aware apps
and subtle system-wide configurations. We describe some example use cases below.

3.1 Subtle Privacy-aware Apps
Subtle privacy-aware apps work together with the PrivacyShield system for fine-grained privacy protection to
selectively protect in-app data.

An app may receive a gesture query recognized by the PrivacyShield system and act accordingly. For example,
In the above mentioned motivating scenario, Sam can simply put notification pop-ups from the messenger app to
“Hide”. A messenger app may accept the gesture of (multi-touch) “2-finger Right Swipe” as hiding message
pop-ups. Subsequently, a photo album app may accept a multi-touch gesture “2-finger Left Swipe” followed by
first character (single-touch) “S” from Sam’s name (mnemonic gesture), and thus, selectively hiding his name
tagged photos. Therefore, along with hiding message notifications, Sam can concurrently hide his personal
photographs. This fine-grained privacy control allows developers to enable users to achieve a balance between
privacy and usability from their apps.
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For hiding or prioritizing message notifications, existing platforms, like Android Lollipop [6] and Marshmallow
[9], come with options such as prioritizing and Hide-All Messages [7]. However, those are limited to “all-or-
nothing” functionality, i.e., stopping all the messages or blocking nothing, and thus affect the usability. Moreover,
they are also neither subtle nor fast in nature, i.e., users have to explicitly configure such privacy settings after
browsing through phone or app setting.
Similarly, for hiding photographs, there are no on-the-fly hide solutions. A device user has to infer a set of

photos which she thinks are private. Thereupon, users choose a certain third-party app, e.g., [17][18], etc., and
create a private folder. The inferred photos are then selected one-by-one and are moved to the private folder.
Existing photo album apps can tag images automatically under a person’s name using face recognition, location,
or voice commands, e.g., iPhoto, Google Picasa, Google Photos, Smart Gallery [10] etc. Leveraging those tags
these apps may receive subtle privacy configuration hints from the PrivacyShield system and selectively hide
certain photos.
In Section 8, we show how to build a subtle-privacy-aware app using the PrivacyShield APIs.

3.2 Subtle System-wide Configurations
In this type of use case, users use gestures to switch a smartphone system into a specific mode or configure
other system-wide settings. For example, using the xShare system or Cells [34][22], users may pre-define some
sharing modes such as a guest mode where no private data or apps are accessible. Before giving a smartphone
to a borrower, the phone owner may simply pull out the phone and draw a touch gesture (e.g., a “2-finger up
swipe”) without turning on the phone’s display. The phone will then silently switch into the guest mode so that
the borrower cannot access any private information of the phone owner.

3.3 Threat Model
Our threat model targets social insiders who acts as curious and careless borrowers and screen-sharers and
without a primary intent to extract data or make changes. These people can involuntarily access information
on or from the phone (case of message-pop-ups, photo browsing) due to their behavioral tendency to snoop on
others device [37]. For the device borrowing scenario, we assume that the borrower has her/his hand on the
device whereas in case of screen sharing, the sharer is viewing the device while the owner is holding it. We
assume a screen-sharer having approximately the same visual angle as the device owner and with device distance
either equal or slightly larger. For the borrower, the person may or may not use the phone next to the owner.
Shoulder surfing is not considered in our scenarios. Also, we don’t consider password compromised cases.

4 SYSTEM DESIGN OVERVIEW
We design PrivacyShield considering the lessons from the design workshop and implementation feasibility. Figure
3 shows the system architecture of PrivacyShield. In the kernel space, the Touch Input Processor receives the
raw touch inputs and sends them to the Gesture Recognizer in the user space (§9). PrivacyShield runs gesture
recognition for multi-touch and single-touch gestures. The Gesture Recognizer uses the pre-trained Gesture
Features database to recognize the gesture from the raw touch inputs. The recognized gesture is then forwarded
to the Command Engine, which looks up the pre-configured Gesture Commands database to decide whether
the gesture was registered as a gesture command to the app or not. For a registered gesture command, the
Command Engine will execute the registered action of the gesture command, e.g., changing the system-wide
settings or calling back to the PrivacyShield app. Otherwise, the gesture is dropped without performing any
further action. When switching from PrivacyShield mode to the normal mode or to check its privacy configuration
status, user authentication is required from the system settings. PrivacyShield also ensures that no performance
degradation is encountered, e.g., when the phone is inside user’s pocket. The system then goes into a suspend
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Fig. 3. System architecture of PrivacyShield. Gray-colored blocks are PrivacyShield’s components.

mode, leveraging the proximity sensor on device with low-power co-processor (§7 and §9). Otherwise, the system
would start processing accidental touch events, which would cause energy drain. We also choose simple 2-finger
swipe gestures against single-finger swipes to make sure that there’s no error in separating simple gesture
commands from character gestures and to avoid accidental single-finger touch events. Using the PrivacyShield
API, app developers may register gesture commands to a corresponding app. For each gesture command, a
callback function is provided. Thus, when such a gesture command is recognized, the Command Engine may
use the callback to notify the corresponding apps. In that case, the Command Engine will call all the callback
functions provided by those apps. All the gesture commands and their callback functions are stored in the Gesture
Commands database. PrivacyShield leverages the concept of name indexing [19] to extract name initials from
apps using the PrivacyShield API. It then profiles and maps all the extracted characters from names with the
gesture command(s) associated with an app. The PrivacyShield system also provides a UI for users to manage all
the gesture command mapping(s) to an app(s). Users may browse, disable or enable existing gesture commands,
and save the changes. Users may also choose different mappings to gesture commands.
Providing users with feedback and command activation flow. To provide feedback to users on whether

a gesture command is correctly recognized or not, we take a vibration-based approach. In this paper, the gesture
command is activated as gesture command(s)→ system time-out→ screen lock1 → system activation.
If the user decides to enter the pass-code or simply unlocks the device, the system activates the desired privacy
setting. If the entered gesture command succeeds with a Horizontal swipe input, no vibration is triggered. A long
vibration of one second is triggered when gesture command is entered with Vertical swipe input. Otherwise, two
short vibrations of half a second each are used to indicate failure. Apart from notifying the user about gesture
command success and failure; another important rationale behind giving vibration as a feedback is to notify the
user about wrong gesture command usage, e.g., if the user accidentally (and correctly) enters a Vertical swipe
gesture instead of an intended Horizontal swipe gesture. The device owner can always update their entry by
simply switching off the screen and re-entering the command. We term such actions as screen reset.
Runtime Monitor. As users may accidentally touch their smartphones, e.g., while holding the phone inside

their pockets, it is important not to process those accidental gestures. As PrivacyShield keeps the touch panel
always on, such random touch events would trigger the Gesture Recognizer and the CPU, and so cause power

1Smart Lock based implicit authentication scheme [47][28][20] may co-exist with PrivacyShield. This will help in activating the system
without launching the lock screen app.
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Fig. 4. PrivacyShield “action” gesture commands. Multiple commands are supported at the same time. All gesture definitions
(Hide/Show) are override-able. For selective and precision-based hide/show, “parameter” gestures are supported. 1st and 2nd
denote the gesture input sequence. Users can select the system’s pre-defined gesture mappings (in this paper) or can choose
their own gesture mappings. “G” denotes the guest mode or multi-user [34].

consumption. We design to use a novel runtime monitor to leverage a low-power co-processor to prevent
PrivacyShield from processing accidental touch events, thus preventing unnecessary waking up of the CPU.
Launching PrivacyShield in display-on case. PrivacyShield also works in cases where the smartphone

owner is continuously interacting with the foreground app, e.g., when the device owner is using the phone for
navigation purpose while her friend is sitting beside her. In such cases, we design the system to use the home
button on the screen. A simple double tap on the home button will launch a transparent PrivacyShield overlay on
the foreground app. The phone owner then can use gesture commands to enter the desired privacy configuration.

Privacy upon gesture input failure. On every screen-lock entry, if the gesture command input attempt
results in correct gesture usage but a wrong character gesture, a Hide-All privacy configuration is enabled for the
respective application case. Else, if there’s a wrong gesture usage (irrespective of the character gesture input), the
Guest Mode [34] is enabled. For accidental but correctly inputted gesture usage, the accidental gesture command
will come into its effect. Device owner may revert gesture usage from the system settings.

5 GESTURE COMMAND FORMAT AND CHALLENGES IN RECOGNITION AND SEGMENTATION
We design PrivacyShield to support simple gesture commands consisting of 2-finger Right Swipe, Left Swipe,
Down Swipe, and Up Swipe for Hide-All or Kill functionality. We also support 2-finger gestures followed by up
to three lower-case characters for enabling selective (precision) hide/show functionality. The considerations for
this design choice are: 1) a few simple gestures are easy to remember and have high recognition accuracy; 2)
lower-case characters have fewer strokes and thus can be drawn faster than upper-case ones.

We define 2-finger gesture commands using the format of “action[parameter]”. The “action” part consists
of a PrivacyShield gesture (consistently defined throughout the paper). The “[parameter]” part is optional and
consists of up to three characters (selective (precision) Hide/Show case). Figure 4 shows the gesture commands.

PrivacyShield is in-built with 2-finger (Single and Double) “Right Swipe”, “Left Swipe”, “Down Swipe” and
“Up Swipe”, along with (Horizontal and Vertical) “Pinch in(out)” gestures. The user may assign a character
gesture(s) stating the intended target person(s) or app(s). In this case, PrivacyShield just matches the gesture
command by using its action part and sends the whole command string to the corresponding app. For example,
for the command “2-finger Left Swipe sp” in Figure 4, PrivacyShield only knows that the Photo app(s) is
registered to the command “2-finger Left Swipe sp”. PrivacyShield just sends “2-finger Left Swipe sp” to
the Photo app(s), which translates it into “hide photos of Sam and Patrick” (“2-finger double Left Swipe”
for reverting to show all2), as per the user’s intent along with the names starting with the same initials. This
2On a similar note, a Single 2-finger Right Swipe associated with “message-pop-up hide” will be overridden with a 2-finger double Right
Swipe (configured to show pop-ups).
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Fig. 5. Gesture Search relies on users for character segmentation and cannot handle (a) Gestures drawn next to each other
(stroke interval 290ms) & (b) Gestures drawn on top of each other (interval 270ms). The Gesture Captures result in wrong
recognition outputs.

functionality provides usability to the user as it results in the selective hiding of photos from Sam and Patrick
but leaves out the rest from the hide operation.
To provide flexibility to scale the hide functionality for several message-pop-ups and photos, the system

supports the use of a selective show option. For example, the command “2-finger double Right Swipe sp”
will result in the system hiding all message-pop-ups except those from Sam and Patrick. PrivacyShield further
provides additional functionalities, e.g., switching between system profiles (normal and guest modes (G)) or
killing existing applications (K) through “Up Swipe” and “Down Swipe”, respectively.
PrivacyShield facilitates device owners to achieve precision on name selection. They only have to choose an

extra command when they are about to enter name initials. Such a command is useful when the device owner
finds herself in a situation where she intends to show photos from, say, Alan, but not, say, Alice. PrivacyShield
configures privacy settings on the first and last letters of the name of a person. For example, for the gesture input
“Horizontal 2-finger Pinch out” followed by “ae”. PrivacyShield gets to know that the parameter “ae” is for
Alice and the action “Horizontal 2-finger Pinch out” is for accessing and showing content from a photo app
(“Horizontal 2-finger Pinch in” for hide3). For the situation wherein the device owner has a friend other than
Alice whose name has its first and last letters “a” and “e”, the precision-based name selection approach also
provides users with an option to enter first three characters of a person’s name. On a single character gesture
entry with “Pinch in(out)”, the system will consider it as a wrong entry.

Challenges in recognizing multiple gesture. It is challenging to recognize these multi-character gesture
commands, particularly in the context of PrivacyShield, as they are drawn in a fast and continuous way without
any visual feedback to users, and without any careful gesture-input consideration. The maximum inter-character
[Set 2] (in §10) and intra-character ([Set 1]4 (in §6) and [Set 2]) time differences were reported as 368ms and

3Similarly, a Vertical 2-finger Pinch in associated with “message-pop-up hide” will be overridden with a 2-finger double Right Swipe
(configured to show pop-ups).
4Each Set# in this paper denotes information collected from a separate set of participants with a specific study goal. No participant from
these sets participated in the Design Study (§2) and the Usability Study (§11).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 76. Publication date: June 2018.



76:12 • S. Pushp et al.

Stroke 

segmentation

Character 

segmentation

Character 

recognition

Fig. 6. Stroke-based gesture segmentation and recognition.

430ms, respectively. As shown in Figure 5, existing gesture-recognition systems, such as Gesture Search [33], rely
on users to separate individual characters through visual feedback. For example, to input the two-character string
“ab”, a user will first input “a”, wait for “a” to be recognized, and then continue to input “b” only after “a” has
been correctly recognized. The user is able to do this because she can know when “a” is correctly recognized by
seeing the recognition result of “a” on the screen. In PrivacyShield, as the user cannot decide when a character
has already been recognized, the system may wrongly send both “a” and “b” to the recognizer, either side by
side or overlapped. In both cases, Gesture Search would fail to recognize the characters.

Challenges in gesture segmentation and need for a new gesture segmentation method. One may think
about some simple approaches to solve the problem of multiple gesture recognition, for example by using a
long-enough wait time. In the above example of “ab”, after inputting “a”, the system could require that the
user wait for 1-2 seconds before inputting “b”. As a result, it is likely (or hopeful) that “a” has been recognized
during the 1-2 seconds time window. However, this approach would significantly increase the gesture-input
time. As a quick input is critical, this approach would significantly affect the usability of PrivacyShield, and
thus, is undesirable. Another possible solution may be by using Optical Character Recognition (OCR) techniques
(e.g., Google Handwriting Input [25][26]), which are designed to scan a character stream and do the character-
segmentation work. However, OCR may solve the side-by-side case, but not the overlapped one. However, in
the past, there have been several researches on overlapped character segmentation. All researches [48][56][30]
assume to have a user interface (UI) on top of which the users draw their gesture queries. In PrivacyShield, such
concepts do not fit, as the system deals with a turned-off display.

The fact that some characters may consist of more than one stroke (e.g., “t”, “f”, “i”, etc.) makes this character-
segmentation problem even more complicated. In this case, the character recognizer may receive a partial
character (e.g., “-” or “l” in “t”) and thus fail to recognize it. Furthermore, grouping strokes together for a full
character is non-trivial. For example, for a three-stroke sequence of “l”, “.”, “l”, it is hard to decide whether they
are “i”, “l” or “l”, “i”. That is, it is hard to decide whether the second stroke “.” should be grouped with the first
stroke or the third stroke, because, while drawing “i”, users may draw the top stroke (i.e., “.”) first and then the
bottom stroke (i.e., “l”), or they might do it in the opposite order.
The above challenges are unique in PrivacyShield. Next, we describe how we address these challenges.

6 SEGMENTING AND RECOGNIZING FAST-DRAWN GESTURES
To address the challenges in recognizing swiftly drawn gestures, we develop a novel stroke-based gesture-
segmentation-and-recognition approach. The key idea is to divide the whole gesture-recognition procedure into
two parts: segmentation and recognition. Before recognizing a character, we first try to determine which stroke
or strokes represent a full character, to avoid recognizing a partial character.

There are three steps in our stroke-based approach, Figure 6. The raw touch inputs are a stream of coordinate
pairs, each coordinate pair consisting of the {x,y} coordinates of a touch input. The first step lies in dividing the
coordinate stream into strokes, called stroke segmentation. This step is simply done by analyzing the coordinates
of the raw touch inputs. Each stroke contains a set of continuous touch inputs, and the output of the stroke-
segmentation step is a stroke stream. The second step is character segmentation, which divides the stroke stream
into stroke groups. Each stoke group may have one or two strokes that are considered as a full character. The
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Fig. 7. Differentiation of full-character (FC) strokes from partial-character (PC) strokes using curvature ratio.

third step, character recognition, further recognizes the character of each stroke group and generates the final
gesture command, which has up to three lower-case characters. The above steps work in pipeline fashion rather
than one after another. For example, once the stroke segmentation step decides a stroke, it sends the stroke to
the character segmentation step immediately and continues to search for the next stroke at the same time. As a
result, the three steps may work simultaneously for faster segmentation and recognition.

6.1 Character Segmentation
The goal of character segmentation is to decide which stroke or strokes are a full character. To do this, we take a
data-driven approach. We conducted a user study with 25 participants who were all young graduate students
aged from 22 to 30 [Set 1]. All gestures were drawn in one attempt by all the participants. They each picked
up the phone with one hand and drew gestures with the other. We asked them to draw all the 26 lower-case
characters without any visual feedback on a Nexus 5 smartphone and collected the stroke data. Then we analyzed
how those strokes were drawn. All the lower-case characters may have one or two strokes. From the collected
stroke data, we confirmed that a single lower-case character has at most two strokes.

For a given stroke s, we use the feature of “Curvature Ratio (CR)” to decide whether it is a “full-character
(FC)” stroke or a “partial-character (PC)” stroke. The “CR” of stroke “s” is defined as

CR(s) =
L(s)

H(s)+W(s)
,

where L(s), H(s) and W(s) are the length, height, and width of stroke s, respectively.
We calculate the CR-values of all the strokes collected in our user study. Figure 7 shows the results in box-plot

format, including the maximum, minimum, average, 25th percentile, 75th percentile, and outlier values. The black
boxes are FC strokes and the gray boxes are PC strokes. For a two-stroke character, we name its short stroke as
stroke #1 and the long stroke as stroke #2. For example, for the character “i”, “i1” means the stroke “.” (i.e.,
the top part of “i”) and “i2” means the stroke “l” (i.e., the bottom part of “i”). Some characters may be drawn by
either one stroke or two strokes, e.g., “k”. For such strokes, we include both cases on the x-axis of Figure 7. For
example, there are three strokes (“k”, “k1”, and “k2”) for the character “k”.
Figure 7 shows that the FC strokes and PC strokes are roughly divided into two groups by their CR values,

although there are some overlapping cases. In general, the CR values of FC strokes are larger than those of PC
strokes. To differentiate FC strokes from PC strokes, we define three CR thresholds. The first threshold, TF is
defined as the maximum CR-value of all the PC strokes. As a result, if the CR-value of a stroke is larger than TF ,
the stroke is a FC stroke. The second threshold, TP , is defined as the minimum CR-value of all the FC strokes.
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Fig. 8. Flowchart of our segmentation algorithm.

Consequently, if the CR value of a stroke is smaller than TP , the stroke is a PC stroke. To further distinguish
the strokes whose CR-values are between TF and TP , we use the third threshold, TS , which is defined as the
maximum CR-value of all the short strokes of the two-stroke characters. TS may help when we cannot decide
whether a stroke is a FC stroke or a PC stroke. In such a case, we combine the next stroke to see whether the
two strokes can be combined into a two-stroke character or not. If the CR-values of both the strokes are larger
than TS , they cannot be combined as a two-stroke character because a two-stroke character must have a short
stroke. Consequently, we infer that the first stroke is a FC stroke.
We design our character-segmentation algorithm to be driven by these three thresholds. Figure 8 shows the

main flow of our algorithm. We first read a stroke s. If CR(s) is larger than TF , we infer that s is a FC stroke.
Then we send s to the character recognizer (i.e., move to the character-recognition step in Figure 8) and go back
to read another stroke. Otherwise, we read the next stroke s′. If CR(s′) is larger than TF , we infer that s′ is a FC
stroke, and thus, s is also a FC stroke. Then we send s and then s′ (separately, as they are two characters) to the
recognizer and go back to read another stroke. Otherwise, if CR(s) is less than TP , we infer that s is a PC stroke
and must be combined with s′. Then we send the combination of s and s′ to the recognizer and go back to read
another stroke. Otherwise, we further decide whether both CR(s) and CR(s′) are larger than TS . If yes, we infer
that s cannot be combined with s′, and thus, s is a FC stroke. Then we send s to the character recognizer, keep s′
as the new s, and go back to the “Read next stroke s′” step. Otherwise, we run into the situation where we
cannot make a decision using the threshold. In this case, we leverage our character-recognition algorithm (to be
described in the next sub-section) to calculate how likely i s should be combined with s′. If s should be combined
with s′, we send the combination of s and s′ to the recognizer and go back to read another stroke. Otherwise, we
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decide that s is a FC stroke. Thus, we send s to the character recognizer, keep s′ as the new s, and go back to the
“Read next stroke s′” step.

6.2 Character Recognition
We leverage existing Nearest Neighbor (NN) and Dynamic Time Warping (DTW) [27] techniques to build our
character-recognition approach. DTW is designed to find the optimal alignment between two dissimilar time-
series-based sequences, by calculating the dissimilarity or distance between the two sequences. In general, for
two sequences S1 and S2, their DTW distance is computed using a function of the two sequences:

Distance = f (S1,S2)

As strokes in PrivacyShield are all time-series-based sequences of coordinates, DTW is an effective way to
calculate the distance/dissimilarity between strokes.

Our character-recognition approach has an offline part and an online part. In the offline part, for each character,
we train a template using our collected user data and an online database [1]. In the online part, for a given stroke
group, we calculate its distance to every character template and recognize it as the character of the template which
has the shortest distance to the stroke group. In Figure 8, the character-recognition step contains only the online
part. We use DTW to calculate the distance in both the offline training and the online recognition. Moreover, we
associate a confidence value (between 0 and 1) corresponding to the recognition results. A confidence value is
the ratio of the number of similar feature samples (coordinate values in our case) from a test stroke group to
the total number of feature samples in a class (character template). The confidence values are calculated across
all the classes. Therefore, the output of the DTW-based recognition algorithm is the recognized character and
the highest confidence value that shows how likely the recognition is correct. The recognition algorithm is also
used in the character-segmentation step when we cannot make a segmentation decision using the CR thresholds,
as we mentioned in §6.1. In that case, we need to decide whether the first stroke is a FC stroke and should be
combined with the second stroke. To do this, we send the first stroke and the combination of the two strokes to
the recognition algorithm and get the returned confidence values. Based on the confidence values, we can make
the decision as shown in Figure 8.
One may wonder: why not just use the recognition algorithm without doing the segmentation first, i.e., for

a given gesture command, we may wait for all the user inputs and try all the stroke combinations using the
DTW-based recognition algorithm. We call this the DTW-only approach. The key reason why we do segmentation
is for speed and power efficiency. DTW is time consuming and energy draining. Without doing segmentation, we
have to run DTW on many combinations and thus introduce significant latency and energy cost. Our segmentation
algorithm makes most decisions based on the CR thresholds, which is very fast. Only in very few cases we have
to call the recognition algorithm for help, but we only need to test two cases. As we do the segmentation first, we
only need to run DTW once for each stroke group. In §10, we show that our approach is much faster and more
accurate than the DTW-only approach.

Choice of DTW based recognition method. Complex gestures are stroke and shape independent. A simpler
template-based approach works well for easy and user-dependent gestures. DTW outperforms other simpler and
state-of-the-art techniques’ recognition algorithms [53] in the case of user-independent and multi-stroke gestures
[54]. Nevertheless, existing gesture algorithms, like Protractor [33], which runs on Android’s core framework
[2], can also be used with our gesture segmentation algorithm. We compare the performance of our gesture
segmentation algorithm with both DTW and Protractor in §10. In the future, our gesture segmentation algorithm
would find usability in any advanced recognition algorithm.
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Listing 1. PrivacyShield runtime monitor for proximity sensor inside co-processor’s sensor device interface. For brevity, we
have not shown PrivacyShield device work suspension, register write prevent operation and page fault exception under
virtual device definition for touch panel.

#ifdef PRIVACY_SHIELD
.....
/*Code block for sensor write detect*/
CWMCU_i2c_write(mcu_data, CWSTM32_ENABLE_REG+i, &data,1);
if ((mcu_data->input != NULL) && (sensors_id == Proximity) && (enabled == 1))
/*Code block for reading sensor write*/
int PrivacyShield runtime_monitor(void)
{u8 data[10]={0};
int ret;
CWMCU_i2c_read(mcu_data,CWSTM32_READ_Proximity,data, 2);
I("[PS] check PrivacyShield:data0=%d data1=%d\n", data[0], data[1]);
ret = data[0];
return ret;}
.....
#endif

7 HANDLING ACCIDENTAL TOUCHES
With the present Android's touch-processing mechanism, PrivacyShield will interrupt the main CPU every time
there’s a touch event. To avoid false CPU interrupts caused by accidental touches, e.g., when the phone is inside
the user’s pocket, PrivacyShield uses two policies. For devices like Nexus 5, we use user-triggered initialization as
it has no low-power co-processor for its touch panel I/O. With user-triggered initialization, the user controls
the switching on and off of the screen digitizer, thus negating the permanent usage of PrivacyShield system.
We implement user-triggered initialization in the power button driver layer for the touch screen. Every time
the user wants to initiate (or deactivate) the PrivacyShield system, she needs to quickly double-press the power
button. This functionality triggers the display processor but with no LCD back-light. On Nexus 5, the system
may also result in performance degradation from accidental touches when the user is attending a phone call.
In such situations, the main CPU is already awake. Thus, the system will process those accidental touches. To
overcome this problem, we simply utilize voc_start() and voc_end() functions under the device microphone’s
driver to infer a situation of phone call.
On devices like HTC M8 with a low-power co-processor, we implement a runtime monitor which can help

PrivacyShield to run continuously by leveraging the low-power co-processor (§9). It monitors the sensor device’s
write operations (at present for proximity sensor only), leveraging the sensor-MCU interface (Listing 1). The
monitor checks the sensor device’s state (proximity_flag()) and then prevents any register write operation from
the touch panel’s driver (leveraging ARM architecture memory mapping via, e.g., I2C) and puts PrivacyShield’s
work function to sleep.

8 PRIVACYSHIELD API AND EXAMPLE PRIVACYSHIELD APPS

PrivacyShield API. As shown in listing 2, PrivacyShield API has two functions and one callback. The
RegisterGestureListener() function is for apps to register gesture commands to our PrivacyShield system. The
gestureCommand parameter is a string of up to three lower-case characters. The callback parameter is a callback
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Listing 2. API of PrivacyShield.

/*gestures to enable*/
enable_gesture_actions(2-fingerswipes, ...)
*gesture_actions = {2fingersinglerightswipe, 2fingersingleleftswipe, 2fingersingledownswipe,

2fingerdoublerightswipe, ...}

/*Register Gestures*/
Bool RegisterGestureListener(String gestureCommand, Bool hasParameter, GestureListener callback);

/*Unregister Gestures*/
Bool UnregisterGestureListener(String gestureCommand);

/*PrivacyShield App mapping*/
Interface GestureListener {
public Bool onCommandReceived (String command); }

function provided to the app for PrivacyShield to call the app back. The hasParameter parameter indicates
whether the app-registered command has a parameter or not. If its value is true, PrivacyShield will use the value of
the gestureCommand parameter (from string matching) for prefix matching in deciding whether a gesture com-
mand should be sent to the app or not. For example, if an app-registered “action” command and a “parameter”
are allowed, PrivacyShield will send both the “action” gesture and the “parameter” gesture “b” to the app. Oth-
erwise, PrivacyShield will do “action” gesture matching, and thus, only the “action” gesture but not the gesture
“b” is sent to the application. If needed, application-set may call the UnregisterGestureListener() function to
cancel a registered gesture command. It has only one parameter to tell which gesture command is to be canceled.
The GestureListener() callback interface has only one callback function, called onCommandReceived(), defined,
which is used by PrivacyShield to send a recognized gesture command to the corresponding app.

Using the above-mentioned PrivacyShield API, we built one new example PrivacyShield app called Talking
Album and customized two existing Instant Messenger (IM) apps to run with PrivacyShield.

PrivacyShield-aware IM. We didn’t build a new IM app, as nobody would use our new app. Instead, to make
it real and useful to existing users, we customized two existing IM apps for PrivacyShield. Android provides a
service called AccessibilityService that can be used for an app to access the internal data of other apps if the
permission is granted. We find that two popular IM apps on Android, Kakao Talk (com.kakao.talk) [3] andWeChat
(com.tencent.com) [4], support AccessibilityService for accessing their ongoing messages. Therefore, our
system leverages AccessibilityService to enable dynamic control of pop-up messages in Kakao and WeChat.
Specifically, our system keeps monitoring the incoming messages in Kakao andWeChat and can know when those
messages pop up. Using PrivacyShield’s APIs, we register the gesture commands. E.g., one gesture command is for
blocking incoming messages from a certain sender. For example, “2-finger Right Swipe s” carries the intention
“Do not show the content of the messages sent from Sam”. Then, if our system receives the command, it
will prevent showing both the content and name from the messages received from Sam. To do this, our system
shows our own pop-up window to hide the pop-up window of Kakao and WeChat. In our pop-up window, we do
not show the content or name from a message if the message is received from Sam.

Talking Album. This app is built on top of the open source camera app called OpenCamera [15]. The existing
functions of OpenCamera are just for taking photos and saving them as albums. We extend it in the following
aspects. First, after taking a photo, we allow the user to use speech to tag it, e.g., speaking out the name of the
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person in the photo to tag the photo. We leverage Bing Speech Recognition and Face APIs (Project Oxford) [12] to 1)
translate speech into text and use the recognized text to tag the photo and 2) use facial recognition on the tagged
photo to auto-tag the rest similar person’s photos, except those which are explicitly tagged to remain under a
given name. Thus, reducing the burden of tagging same person’s photo every time that person’s photo is taken.
Presently, we only support English names. Second, we organize all the photos according to their tags. For example,
we may group all the photos of the same person into a photo album. Finally, we use our PrivacyShield API to
register some gesture commands to manage the photo albums in a quick way. Similar to the PrivacyShield-aware
IM app, we may use the gesture command “2-finger Left Swipe s” to hide all the photos tagged by the name
“Sam”. After receiving the “2-finger Left Swipe s” command, when a user launches the app, none of the photos
of Sam will be shown. The app accesses the Android’s “Image Picker” interface which returns an internal URI
(Uniform Resource Identifier). It then leverages the ContentResolver object to read a photo and then perform
the user desired photo hide/show through a file permission change. With the PrivacyShield API, app developers
attest only the gesture functionality to their app. For the Talking Album app, the gesture attestation part requires
only 58 LoC.

9 IMPLEMENTATION
We have implemented the PrivacyShield system on two smartphones: a LG Nexus 55 [5] and a HTC One M8 [8].
Both phones have a quad-core 2.3 GHz Krait 400 CPU. The M8 phone also has a low-power co-processor of 72
MHz. The Nexus 5 phone runs Android 4.4.4 KitKat and the M8 phone runs the HTC-customized Android 5.0.2
Lollipop with the HTC Sense UI. Driver implementation on Nexus 5/(5X) and HTC M8 took 640 and 547 LoC,
respectively. PrivacyShield user-space took 2,190 LoC.

Getting Touch Inputs with Display off. On the Nexus 5/5X phone, we figured out that the LCD display panel
and the touch panel (i.e., the screen digitizer) are coupled together in hardware and they can only be powered on
or off at the same time. It is not possible to turn off the LCD panel but keep the touch panel on. To implement
PrivacyShield, we emulate the display-off-but-touch-on state by modifying the display driver and the touch-panel
driver in the kernel space.6 In the display driver, when the display is turned off (in case of a screen reset), we
only turn off the backlight but not the LCD panel itself. This is done by modifying the mdss_dsi_panel_off
function. When the backlight is totally off, the display shows nothing and looks like it is turned off. We call this
the emulated-off state. In the touch panel driver, when the display is in the emulated-off state (determined via the
lcd_notify notification), we do not turn off the touch panel and continue to receive new touch inputs. To achieve
this, we implemented a PrivacyShield virtual device. We also create a dedicated sysfs [39] device file entry for
the Gesture Recognizer7 to read the raw touch inputs with time-stamp for single-touch, and time-stamp and
_TRACKING_ID for multi-touch. When the display is turned on, we turn on the backlight in the display driver and
disable our own sysfs device entry in the touch-panel driver. Consequently, new touch inputs will be dispatched
to the Android framework via the original sysfs device entry, and the user can continue to normally use the
phone.
On the M8 phone, the display panel and the touch panel are separate in hardware. We may power-off the

display panel but keep the touch panel powered always on to receive raw touch inputs (instead of the existing
sensor-based wake-up mechanism [8], to avoid any extra effort to activate the screen). Thus, we do not need to
modify the display driver. Similar to the Nexus 5/5X phone case, we modify the touch panel driver to create a

5We also implemented PrivacyShield on a Nexus 5X smartphone. The hardware design (digitizer and display panel coupling) was similar to
Nexus 5. Thus, we only present the details from the Nexus 5 implementation.
6We emulate screen I/O as a power-button. In this way, each touch input resembles a button press.
7The system uses the Input Dispatcher daemon in the Android OS and leverages the binder mechanism to pass all touch inputs from the
Input Dispatcher to the Gesture Recognizer.
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Fig. 9. (I) Baseline power of N5 after display processor is turned on. (II) Wake lock time-out makes sure that even an accidental
touch, if resides on the screen without any movement, will not cause extra energy drain.

dedicated sysfs device entry for the gesture recognizer to read the raw touch inputs when the display is turned
off. Different from the Nexus 5/5X phone case, we leverage the low-power co-processor of the M8 phone to listen
to touch inputs. This is done by modifying the configuration of the low-power co-processor (via the CwMcuSensor
function). As a result, when there’s no touch input, the main CPU can sleep to save power. When a touch input
comes, the co-processor wakes up the main CPU to process the input.

Further Power Optimization. To further reduce power consumption, we take the following approach. We allow
the main CPU to frequently sleep to save power when there is duplicate touch inputs. After passing the check from
the runtime monitor, i.e., proximity_flag(false)→ PrivacyShield active, PrivacyShield enables the system
to wake up the main CPU when it hears a touch input. After being woken up by a touch input, the following touch
inputs are sent to the Gesture Recognizer. We configure the touch panel not to generate duplicated touch inputs
with same touch coordinates. This approach is different from the current Android touch-processing mechanism,
which continuously processes the touch input, and thus holds a wake-lock on the CPU. Therefore, the system
helps in reducing the CPU’s need to be waken frequently when a user holds a phone still; i.e., when there is no
movement on the touch panel, the main CPU will not continuously receive the duplicated touch inputs, and
thus may go to sleep to save power. This configuration is done by adding a reset function when repeated touch
coordinates are encountered. The function resets the driver’s touch listener function by using gpio_reset to its
initial touch input listening state and simultaneously releases CPU wake-lock. Figure 9 shows an example of
emulated accidental touch input when running PrivacyShield on Nexus 5. The system interrupts the CPU when
it detects a touch but immediately puts CPU to sleep, the moment it finds out no movement from the touch (case
of duplicate coordinates).

10 EVALUATION
We evaluate our segmentation algorithm and PrivacyShield system in terms of segmentation and recognition
accuracy, processing latency, and power consumption. For measuring the performance of the segmentation
algorithm, we performed experiments on a MacBook Air running a 1.6GHz dual-core Intel Core i5 with 4 GB of
RAM. To measure on-device algorithm-processing time and processing latency, we used a Nexus 5 smartphone
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running Android 4.4.4 KitKat. The evaluation results show that our approach is more accurate than the DTW-only
and Protractor-only gesture recognition approaches in terms of both segmentation and recognition outputs. In
terms of processing latency, our segmentation approach is faster than the DTW-only approach. Moreover, our
power-optimization techniques are effective in reducing the system’s power consumption.

10.1 Data Collection and Replay
We take a trace-driven approach for the evaluations. To do this, we collected data in two stages. In the first
stage, we collected data for measuring the segmentation algorithm’s performance in terms of segmentation and
recognition accuracy against recognition-only algorithms. We collected data from 24 participants, who were all
young graduate students aged 21 to 34, 13 of whom were females [Set 2]. We introduced the PrivacyShield system
to them and asked them to draw single-character (1-c) gestures of all the 26 lower-case characters on the screen
digitizer. As it is hard to collect large combinations (676 combinations of 2-character (2-c) and 17,576 combinations
of 3-character (3-c) gestures) of gestures from each participant, we leveraged the 1-c data to generate a synthetic
data set. To generate 2-c gesture combinations, we used 1-c gesture sets from two participants each (to avoid
bias due to character similarity), e.g., {26 (P(1)) × 26 (P(2))}, {26 (P(3)) × 26 (P(4))}, ... {26 (P(n-1)) × 26 (P(n))},
where n = 24 participants, and generated 676 × 12, i.e., 8,112 2-c gesture combinations. Similarly, we utilized three
participants’ 1-c gesture sets to generate a total of 1,40,608 (17,576 × 8) 3-c gesture combinations.

To understand the performance of the segmentation algorithm on the varying shapes and sizes of continuously
drawn gestures, our second stage of data collection focused on logging actually drawn 2-c and 3-c gestures. As
mentioned before, logging a large number of gesture combinations from each participant is difficult. Therefore,
we asked participants to draw limited but important cases of 2-c and 3-c gesture combinations. The cases
included scenarios where all gesture combinations were drawn using two stroke (2-s) gestures or were drawn
in combination with single-stroke (1-s) gesture(s). Moreover, in the first stage of our data collection, we saw
participants using two strokes in drawing gestures for “d”, “f”, “i”, “j”, “k”, “p”, “t”, “y”, “z”, and “x”. Therefore,
in the second phase, participants drew these gestures as 2-s gesture(s) in combination with single-stroke 1-s
gesture(s). Participants drew: (1) 3-strokes (3-s) : 2-c (10 × 16 × 24; 3,840 gesture combinations), and 4-strokes
(4-s) : 2-c (10 × 10 × 24; 2,400 gesture combinations); (2) 4-s : 3-c (16 × 16 × 10 × 24; 60,000 gesture combinations),
5-strokes (5-s) : 3-c (10 × 10 × 16 × 24; 38,400 gesture combinations), and 6-strokes (6-s) : 3-c (10 × 10 × 10 × 24;
24,000 gesture combinations). All participants volunteered for a 2-week data recording period. Each participant
recorded data every day for at least 1 hour. Participants were shown a series of random 2-c and 3-c gesture
combinations on a laptop screen. Thereafter, they entered character combinations as quickly as possible. In all the
experiments, the participants were given single attempts to draw the gesture(s). Moreover, all participants drew
gestures while sitting. All participants chose to draw gestures with their index finger while holding the device in
the other hand. Participants were offered a $30 gift card. We re-played the recorded data on our PC version of the
algorithms to get our evaluation results. By separating performance evaluation from data collection, we avoided
the impact of performance measurement, and thus got clean user-input data with accurate timing information
and ground truth.

10.2 Avoiding False Positives in Recognition
Hand-drawn gestures are susceptible to device orientation caused by hand movements; therefore we made
the gesture recognition resistant to false positives. To do so, we determined an appropriate threshold for the
confidence value (in recognizing a gesture set), above which the possibility of any false positive becomes negligible.
To find a confidence value threshold, we used the synthetic 2-c and 3-c gesture combinations obtained from
the the first stage of our data collection. As the gesture sets were replayed, gesture recognition was performed
and each detection of the correct gesture set was flagged. To investigate the effect of varying the confidence
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(a) The 2-c recognition true recognition output rate versus confidence values. (b) The 3-c recognition true recognition output rate versus confidence values.
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Fig. 10. The recognition precision rate against confidence value threshold (related to DTW recognizer).

Table 2. Segmentation accuracy and recognition accuracy (with confidence value of 0.8 (DTW) and 0.75 (Protractor)) of
one-character (1-c), two-character (2-c), and three-character (3-c) gestures.

Segmentation Recognition
1-c 2-c 3-c 1-c 2-c 3-c

Our approach with DTW 95% 94% 89% 87% 74% 63%
DTW-only 91% 75% 69% 83% 61% 43%

Our approach with Protractor - - - 84% 68% 56%
Protractor-only 85% 76% 62% 80% 56% 35%

value threshold of the recognizer, the program iterated through the complete data-set by incrementing the
threshold distance for each iteration. Figure 10 shows the relationship between the true recognition output
(precision) and the threshold level for the confidence value measured from the DTW recognizer. Based on the
populated data, the true recognition output converges to 100% at a confidence value of 0.77 and 0.80 for 2-c
and 3-c recognition, respectively. For the Protractor recognizer, we followed a similar approach. The retrieved
threshold confidence values in this case were 0.72 and 0.75 for 2-c and 3-c gestures, respectively. In both cases, we
chose a higher confidence value of 0.8 (DTW) and 0.75 (Protractor) to consider the output of recognition as valid
(including 1-c gestures). Note that a high confidence value would also inflict true negatives through the system.
However, this approach provides the owner the ability to achieve an accurate usability configuration, but not at
the cost of sacrificing privacy. Also, a higher confidence value threshold provides a tight criterion for the users of
PrivacyShield to draw gestures as nearly as to the elicited templates. In terms of the system’s perspective, any
gesture recognition output below this value results in the system enabling Hide-All, meaning that the gesture
was not recognized.

10.3 Segmentation and Recognition Accuracy
We evaluated the performance of our segmentation algorithm in two steps. In the first step, we used the synthetic
data set and compared our approach with the DTW-only and Protractor-only [51] approaches, which processes
various combinations of all the strokes of a gesture command to decide the best recognition results. For the sake
of fairness, in the DTW-only and Protractor-only approaches, we also assume that a character can have up to 2
strokes, and thus use a 2-stroke window to reduce the number of stroke combinations. In the second step, we
measure the segmentation and recognition accuracy of the segmentation algorithm with the DTW-only approach
in relation to actually drawn 2-c and 3-c gestures.
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Table 3. Segmentation and recognition accuracy of 3-stroke and 2-character (3-s:2-c), 4-stroke and 2-character (4-s:2-c), 4-
stroke and 3-character (4-s:3-c), 5-stroke and 3-character (5-s:3-c), and 6-stroke and 3-character (6-s:3-c) gesture combinations.

Segmentation Recognition
3-s:2-c 4-s:2-c 4-s:3-c 5-s:3-c 6-s:3-c 3-s:2-c 4-s:2-c 4-s:3-c 5-s:3-c 6-s:3-c

Our approach with DTW 91% 90% 92% 89% 86% 78% 71% 68% 63% 55%
DTW-only 78% 73% 76% 71% 63% 64% 55% 50% 42% 37%

Incoming Strokes

Wait for last stroke (500ms)

Extra Processing Time after the last stroke

Time

Fig. 11. Processing latency is the extra processing time after the last stroke arrives.

Segmentation and Recognition Accuracy on synthetic data. The results in Table 2 show that our approach
greatly outperforms the DTW-only and Protractor-only ones in terms of both segmentation accuracy and the final
recognition accuracy. The accuracy of our approach is practical for one-character and two-character gestures,
which would be widely used in real-life situations. For the segmentation, our approach shows 95% and 94%
accuracy for one- and two-character gestures, respectively. In comparison, DTW-only shows 91% and 75%
segmentation accuracy, respectively; and Protractor-only shows 85% and 76% segmentation accuracy, respectively.
For the final recognition accuracy, our approach shows 87% and 74% for one-character and two-character gestures,
respectively; whereas DTW-only shows 83% and 61%, respectively. On the other hand, Protractor-only shows 80%
and 56% recognition accuracy, respectively. Our approach also outperforms DTW-only and Protractor-only for
three-character gestures, with 89% segmentation and 63% recognition accuracy. The gap between segmentation
and recognition accuracy becomes larger since the error multiplies as the number of characters increases. While
three-character gestures would not be widely acceptable by users due to their long operation times in our scenario
or their non-frequent usability requirement, they could be applied in different application scenarios, e.g., in case
of name-encoding collisions, controlling a music player’s play list without turning on the screen, etc. We leave
the improvement of the accuracy for multiple-character gestures as future work.

Segmentation and Recognition Accuracy on actually drawn 2-c and 3-c gestures. Table 3 shows the
segmentation and recognition accuracy after replaying different combinations of strokes for various 2-c and
3-c character gestures. Our approach maintains its performance with respect to the segmentation accuracy.
For 3-s : 2-c and 4-s : 2-c gesture combinations, the algorithm results in 91% and 90% segmentation accuracy,
respectively; and 78% and 71% in recognition accuracy, respectively. In cases of 4-s : 3-c, 5-s : 3-c, and 6-s : 3-c
gesture combinations, the recognition performance from the segmentation algorithm shows a higher accuracy
of 68%, 63% and 55%, respectively; whereas, DTW-only shows 50%, 42% and 37%, respectively. In segmentation
performance, our approach shows 92%, 89% and 86% segmentation accuracy, respectively. In comparison, the
DTW-only approach results in 76%, 71% and 63% segmentation accuracy, respectively.

10.4 Processing Latency
Figure 11 shows how the algorithm-processing time may impact the system latency. As a set of strokes arrives,
our algorithms start to process them in pipeline. To decide the last stroke, our PrivacyShield system takes a
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(a) (b)

(c)

Fig. 12. Processing latency of our approach and the DTW-only approach for (a) one-character gestures, (b) two-character
gestures, (c) and three-character gestures. Note that, for DTW, more stroke combinations to test, more the energy is drained.

timeout-based method. Specifically, if no more strokes come within 500 ms, we decide that the previous stroke is
the last one. We choose 500 ms as the threshold time, since we found that all inter-stroke time intervals were
less than 500 ms in our collected data and this timeout value can be further tuned. If all the segmentation and
recognition processing can be done before this 500ms timeout expires, it does not bring in any extra system latency.
Therefore, what matters is the extra processing time after the last stroke arrives. We call this the processing
latency. Figure 12 shows a case of processing latency of our approach and the DTW-only approach after re-playing
624 1-c, 312 2-c and 216 3-c gesture sets on a Nexus 5 phone. It shows that our approach has a much smaller
processing latency than the DTW-only approach. Our segmentation algorithm usually takes less than 10 ms and
running DTW-recognition once costs about 150 ms. In our approach, most of the time (75%), all the processing
is finished before the 500ms timeout expires, causing zero processing latency. At most, we need to run DTW
once (for the last stroke), and thus, the processing latency is always less than 200 ms. More importantly, our
approach performs the same no matter how many characters a gesture has. However, in the DTW-only approach,
its performance depends heavily on the number of characters of a gesture. As it starts to process the strokes
after the 500ms timeout expires, it needs to run DTW-recognition at least once and up to three times for even
one-character gestures. For two-character and three-character gestures, it may run DTW-recognition many times,
and thus may lead to a very high processing latency, up to more than 3,000 ms. These results show that our
threshold-based segmentation algorithm can significantly reduce the processing latency, and thus, energy cost.

10.5 Power Consumption
To measure power consumption, we performed battery drain comparison on the stock ROM for the respective
mobile phones against PrivacyShield’s ROM. On Nexus 5, Figure 13 (Left) shows the power consumption in all
set-ups. Measurements were performed with Monsoon Power Monitor [16]. To highlight the results, Type 4

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 76. Publication date: June 2018.



76:24 • S. Pushp et al.

Fig. 13. (Left) Energy consumption of Nexus 5 for different set-ups. (Right) Normalized remaining battery capacity measured
on M8 in three trials (Lower is better).

shows an emulated black screen [21]. Type 3 shows the power usage when PrivacyShield is running and the CPU
is in a suspended state. Type 5 shows the overhead of keeping the CPU active. PrivacyShield would incur 70mW
extra power (which thus negates the fact that the CPU wake-lock results in high power consumption [36]). Type
2 shows the reference partial wake-lock power consumption without PrivacyShield. Type 6 shows the average
power consumption for running the whole system in processing a gesture command with a single (two stroke)
character gesture. For HTC One M8, we took a software based solution to measure power consumption. Since
the device has a non-removable battery we measured the remaining battery from device’s battery interface. The
device was left idle on a table for 12 hours. To measure the power consumption due to PrivacyShield, we turned
off all Wi-Fi and cellular communication so that the measurements would not get effected. Figure 13 (Right)
shows the remaining battery capacity of M8 after sitting idle for 12 hours. The power consumption was within
2.5% of the baseline (native ROM with motion launch enabled). Thus, there was no substantial increase in the
power usage when running PrivacyShield. There was a minuscule difference when we recorded battery usage
while the proximity_flag(true) because the digitizer was always on while the monitor performed register
write and touch-processing work function status check from proximity_flag state.

11 USABILITY STUDY
Our study procedure consists of two phases. The goal of the first phase was to measure users’ memorizability
of the gesture usages (Initial Testing Phase, §11.1). The second phase was to investigate user experience and
effectiveness of the gesture usage of PrivacyShield in comparison to an alternate non-touch-screen-based gesture
input method (System Deployment Phase, §11.2). Participants for the initial testing and system deployment
phases were recruited from our previously used motivational survey.8 We collected data from 14 participants
who participated in the study for compensation.

Table 4 shows the list of participants who participated in the usability study. In the first phase, 8 participants,
P1 to P8, were invited. They frequently encountered the privacy situations “At least once a day” or “At least once a
week” and capitalized upon different privacy-provisioning approaches whenever they encountered such situations.
PrivacyShield’s action gesture-usages were pre-defined as they are difficult to remember in comparison to user-
defined gestures [40]. In the second phase, 6 out of these 8 participants (from the first phase) volunteered for
a six-week system deployment study along with 6 newly recruited participants, P9 to P14. Participants P9 to
8None of the participants participated in the Design Workshop.
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Table 4. All participants’ demographics and their current privacy-provisioning approaches to avoid information leaks when
encountering a device sharing situation.

ID Gender Age Occupation Hand-orientation Privacy setting(s) used so far
P1 M 28 Graduate student Right handed Third-party app
P2 M 21 Undergraduate student Right handed Notification hide
P3 F 22 Undergraduate student Right handed Notification hide and third-party app
P4 M 24 Undergraduate student Right handed Notification hide
P5 F 26 Undergraduate student Left handed Notification hide and third-party app
P6 M 23 Undergraduate student Right handed Notification hide and third-party app
P7 F 24 Undergraduate student Right handed Make excuses
P8 F 18 Undergraduate student Right handed Make excuses
P9 M 29 Graduate student Right handed Make excuses
P10 M 26 Graduate student Right handed Make excuses
P11 F 25 Graduate student Right handed Make excuses
P12 M 27 Graduate student Right handed Make excuses
P13 F 22 Undergraduate student Right handed Make excuses
P14 F 20 Undergraduate student Right handed Make excuses

1

Message with Sender 

Name and Content

3

Message Pop-up customized 

to hide message content

2

User inputting a 

gesture command 

Fig. 14. A motivational example from an Instant Messaging application (WeChat) using Privacy Shield on a Nexus 5 phone.

P14 never utilized any privacy-provisioning approaches, and were always at risk of exposing their information
under device-sharing situations. They would make excuses and avoid any device sharing. P7 and P8 did not
participate in this phase. After the deployment study, participants P1 to P6 compared their user experience
with their previously used approaches and PrivacyShield’s method of providing privacy-provisioning. Later,
we compared every participant’s experience in using PrivacyShield and the alternate non-touch-screen-based
gesture method.

11.1 Initial Testing Phase
The main aim of this study is to provide empirical evidence on the cognitive cost of the gesture command’s
action-usage corresponding to our system through a four-week field study.

Procedure. After providing their consent and before starting the deployment phase of the experiment, the
participants were shown a demo video of the actual PrivacyShield system (running on a Nexus 5 device). The
video provided a short version of an example action gesture’s usage for hiding the message content but not the
name from a sender’s message notification, as shown in Figure 14. We provided PrivacyShield-enabled Nexus 5
(running KitKat 4.4.4) devices to all the participants and asked them to use the device as their own. After the video
tutorial, the participants were taught about the gesture usage of all the action gestures. Teaching per participant
took about 45 minutes. A roll-back feature followed by an experience-sampling questionnaire was introduced to
them. The roll-back feature showed the correct gesture-usage input upon an incorrect gesture-usage entry and
requested the user to draw it again. Thereafter, the experience-sampling questionnaire asked the user about the
cause for wrong gesture-usage input. We collected participants’ gesture-usage data for a week.
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Fig. 15. Top: Histogram showing # of participants correctly recalling n gesture usages (x-axis) during the initial testing phase.
Bottom: Mean Success Rate of all the participants with respect to all gesture usages. The experiment was performed in 4
periods (Day #). The 3rd and 4th periods started after a gap of one day and two days, respectively. The error bars show a 95%
confidence interval.

Initial testing phase performance. This phase was started after a day’s gap and comprised 4 periods of testing
(Figure 15). Participants were asked to input all the gesture usages (no app customization took place). They
were not asked to draw gesture usages in the same order to avoid effects due to sequential memorization. We
developed a custom web-based text-message sending service which asked the participants to input the desired
gesture action every hour. The reaction time to the text message was also logged by the app. On average, the
maximum and minimum response times recorded were 6.59 seconds (SD = 4.38) and 0.45 seconds (SD = 0.25),
respectively. The correctness of the gesture usages was evaluated by our system. The main focus of the study
was to measure the success rate and recall. A gesture was considered as correctly recalled if it involved the
correct number of fingers (2-fingers) and the right direction of the finger movement for a particular gesture usage
(gesture association). A total of 320 gesture-usage inputs were performed by the participants. Each participant
performed 10 different gesture usages per day. Figure 15 shows the next-day recall rate of all the participants
for all the pre-defined gesture usages. A 70% average (SD = 0.33) recall was seen after a day’s gap. From the
experience-sampling questionnaire, we figured out that this lower recall rate was not because of the memorability
issue (gesture association) but because of a lack of physical attention, resulting in errors due to orientation of
the finger movement with respect to the phone. The recall rate improved on successive next-day tests, reaching
96.25% on average (SD = 0.34) on the fourth day of test. In Figure 15, the mean success rate was high and the
errors were due to a lack of physical attention or focus on the respective gesture-usage inputs. Pinch-out vertical
(Precision-based show photo) was the only gesture where many participants failed, resulting in an average 87.5%
(SD = 0.22) success rate.
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11.2 System Deployment Phase
In this phase, we verify whether a system like PrivacyShield works well in a realistic environment. To investigate
user experience and the effectiveness of PrivacyShield, we conduct an evaluation study that includes: 1) using
PrivacyShield and an alternative wrist gesture method for 3 weeks each; and 2) Post-deployment surveys and
interviews. Our motivation to compare PrivacyShield with the wrist gesture method comes from the current trend
in smartphone form factor, which is moving towards a button-less design [14]. Therefore, instead of developing,
say, a method which uses a combination of button presses, we capitalize on the concept of leveraging wrist
gestures.

Wrist gesturemethod design and implementation.We develop a simple energy-efficient wrist-gesture-based
notification and photo hide/show application. The app requires a user to flick her wrist to communicate her
intentions of hiding/showing message notifications or photos. To enable the selective hide/show feature on
message-pop-ups or photos, the application provides the user with a UI to 1) include contact group names from a
messaging app or 2) select photos which can be profiled under privacy sensitive groups of name(s) or photo(s)
(hereinafter, privacy profile group), respectively. A user can freely add or delete any name(s) or photo(s) based on
her privacy preferences. Excepting the privacy profile group, the rest of the message pop-ups’ functionality is
kept to the default “Don’t silence or block” (e.g., from Android OS). Similarly, all photos are accessible to the user
if they are not selected to be part of the privacy profile group. For switching from privacy modes to the normal
mode, user authentication is required.
We implemented four wrist gesture commands: “DownFlick” → “Selective message-pop-ups hide”, “2-

DownFlicks”→ “All message-pop-ups show”, “UpFlick”→ “Selective photos hide”, and “2-Upflicks”→
“All photos show” on Nexus 5 smartphones. The gesture commands are activated as gesture commands →

screen lock→ system activation. For all DownFlick gestures, no vibration (as a feedback) was given by the
app, while for UpFlick gestures, a long vibration of one second was given. “2-DownFlicks” and “2-Upflicks”
were used as override gesture commands. The wrist gesture application is implemented by leveraging a multi-
situation HMM classifier running a collaborative gesture-sensing and segmentation architecture [43]. The app
runs by acquiring a partial CPU wake-lock. The total average device power consumption in running the app
is ∼86mW. The application achieves a gesture recognition accuracy of ∼96% for 180 gesture samples collected
for each gesture types from all 12 participants who performed the gestures while standing (one-third used for
testing). Moreover, the processing time per gesture usage is ∼2,400ms. All experiments were performed before the
start of system deployment. The application leverages the AccessibilityService object and ContentResolver
object to enable the dynamic control of pop-up messages and photo hide/show functionality, respectively (§8).

System deployment procedure.After receiving their consent, we introduced the features of both PrivacyShield
and the wrist gesture method to the participants; and gave them a tutorial on how to use both the methods. All
participants used Nexus 5 as their personal device for 6 weeks. We divided the 12 participants into two groups:
Group A and Group B. P1 to P6 belonged to Group A, while P9 to P14 comprised Group B. Each group used both
privacy-provisioning approaches in two stages. In the first stage of the deployment study, Group A participants
used PrivacyShield while Group B participants used the wrist-gesture-based method for 3 weeks each. In the
next phase, Group B used PrivacyShield while Group A used the wrist-based method for another 3 weeks. Each
participant was asked to realistically use PrivacyShield and the wrist gesture method whenever they thought
their information from the device could get snooped on. We narrowed down our deployment study to subtle
privacy-aware apps to better understand PrivacyShield’s “action[parameter]” gesture-command use against
the profile-based wrist gesture method. Participants were asked about the number of people with whom they
frequently interacted using their messaging client (participants used their preferred messaging app, i.e., Kakao
Talk). Most of the participants reported that they frequently interacted with no more than five people on a regular
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Fig. 16. The Mean Success Rate (first attempt) of all gesture usages. No participant failed on their second attempt.

basis. This excluded group chats as the interaction is more sporadic than regular in such chat rooms. Also, a
previous study [44] reported that users mostly interact with not more than twelve people (on a regular basis) on
their chat client (including group chat rooms). Through the experience-sampling questionnaire, we asked the
participants to describe the episode(s) of just-in-time privacy provisioning,9 along with names of the persons for
whom they entered respective gesture commands.

11.2.1 Effectiveness of PrivacyShield in Terms of Privacy Provisioning. In total, we recorded 153 privacy sessions
from participants of Group A and B based on the criteria that a participant used gesture command after sensing
the gravity of a possible device sharing or borrowing situation; and reverted the privacy setting to the normal
setting after such situation was over. We consider the start of a privacy session when a Hide or Show (with or
without “[parameter]”) is activated by a participant. We consider the end of a privacy session when a user
either uses an override “action” command without a “[parameter]” or revert a privacy session from the system
settings.
From the six participants belonging to Group A, we collected 74 privacy-configuration sessions. In total, 106

“action” gestures and 109 “[parameter]” gestures were recorded. Figure 16 shows the first-attempt success rate
with respect to each gesture use and the participants. In all cases, no participant drew more than one gesture use at
a time. We recorded a maximum number of failed first-time attempts (by monitoring screen reset). No participant
failed on their successive attempt. The overall participants’ success rate (“action[parameter]” combined) was
∼81.4% (Min ∼57.1% (P2) and Max ∼87.5% (P3)). The maximum number of privacy sessions recorded was 19 (P6).
For ending a privacy session, 32 “action” gestures were recorded (P1, P3, and P4), while 42 sessions were ended
with system setting configuration (P2, P5, and P6). The minimum and maximum times taken to revert from a
privacy session to the normal setting were 3.09 minutes and 62.12 minutes (M = 24.21, SD = 16.94), respectively.
In terms of using “[parameter]” suffix in a gesture command, we found that most of the participants used

parameter suffix frequently. “action” gesture alone was only used for 5 times in the case of P5 (in 2 out of total
15 privacy sessions and gesture commands) and P6 (in 3 out of 19 privacy sessions and gesture commands). P1
(9 privacy sessions, total 18 gesture commands), P2 (8 privacy sessions and gesture commands), P3 (13 privacy
sessions, total 26 gesture commands) and P4 (10 privacy sessions, total 20 gesture commands) always used
“[parameter]” suffix. P3 and P4 were the two people who used Pinch gestures, as shown in Figure 16. From the
experience-sampling comments, we figured out that both participants had two names beginning with the same
character and required separate priority in different scenarios. Also, P2 used the selective show option to start all
of his privacy sessions, while P4 utilized the selective show option in 3 of his privacy sessions. Therefore, total 11
9Participants were asked to enter their experience at the end of each day of gesture-command use.
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[7SR (C), 9SL (C)][11SR x 2 (C)][7SL (C), 14SR (C)] [5SR (C)] [5SL (C), 3SR, 6SL (C)] [12SL x 2 (C)]

P9 P10 P11 P12 P13 P14

Fig. 17. First attempt Mean Success Rate of all gesture usages. Gesture-only statistics include reverting PrivacyShield to
normal-setting cases. The values above show the type and number of times a gesture command was used to start a particular
privacy session. SL : Swipe Left, SR : Swipe Right, SL × 2 : double Left Swipe, SR × 2 : double Right Swipe. SL(C)/SR(C) or
SL × 2(C)/SL × 2(C) : “action” gesture followed by a “parameter” gesture. No participant failed on their second attempt.

Intra-gesture

Inter-gesture

Intra-gesture

Inter-gesture

Fig. 18. (Left) Inter- and Intra-Stroke interval between gestures (for Group A participants). 27 two-length gestures and
82 three-length gestures were recorded for configuring privacy sessions. (Right) Inter- and Intra-Stroke interval between
gestures (for Group B participants). Both measurements include “action” gestures in them.

times selective show gesture-usages were recorded to start a privacy session. The maximum number of names
used from the participants’ contact list and name-tagged photos was 3, for P5; whereas minimum was 1 in the
case of P1. Rest of the participants: P3, P2, P4 and P6 utilized 2 names. Only P2 used two names at once in each of
his privacy sessions.

For the second group, Group B, we collected a total of 79 privacy-configuration sessions. As shown in Figure
17, the overall participants’ success rate (“action[parameter]” combined) was ∼80% (Min ∼60% (P12) and Max
∼94% (P9)). Selective hide/show (and no Pinch based hide/show) “action[parameter]” gestures were frequently
used by all the participants. P9 (21 privacy sessions (maximum privacy sessions), total 42 gesture commands), P10
(11 privacy sessions, total 22 gesture commands), P11 (16 privacy sessions, total 32 gesture commands), P13 (14
privacy sessions, total 28 gesture commands), and P14 (12 privacy sessions, total 24 gesture commands) all used
the gesture-override option, except P12 (5 privacy sessions), who used the system settings to end a privacy session.
3 “action”-only gestures were recorded in case of P13. P10 utilized a maximum of 4 names from his contact list
and used the selective show option to hide message notifications in all of his privacy sessions. Similarly, P14
used the selective show option to hide her personal photographs in all her privacy sessions. In total, 23 privacy
sessions were started with the selective show option. The rest of the participants utilized 2 names to configure
their privacy settings. The minimum and maximum times taken to revert from a privacy session to the normal
setting were 5.05 minutes and 56.55 minutes (M = 23.56, SD = 19.32), respectively.
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Swiftness in configuring privacy settings. All the participants were able to perform gesture inputs within
the processing latency of the system. As shown in Figure 18 (Left), for the Group A participants, the maximum
speed between two gesture commands was 340ms. Furthermore, the maximum total time to input gesture
commands was 3,200ms. Similarly, for the Group B participants, the maximum total time to input gesture
commands was 2,900ms, while the maximum inter-gesture drawing time was 230ms (Figure 18 (Right)). The
results highlight the fact that gesture commands were inputted in a swift way.
System utilization in the middle of device sharing. From the experience-sampling questionnaire, partici-

pants reported instances of using the system’s gesture commands while they had their devices’ screens shared
with other people. We found that ∼15.45% (9.45% in the case of Group A participants and 6% in the case of Group
B participants) of the privacy sessions were initiated while the display was on, for example, when a participant
was engaged in a Skype call with colleagues.

11.2.2 Effectiveness of the Wrist Gesture Method in Configuring Privacy. The wrist gesture method recorded a
low number of privacy sessions. In total, 75 privacy sessions were recorded (Group A: 34 privacy sessions; and
Group B: 41 privacy sessions), which was ∼2x lower than PrivacyShield-based privacy-provisioning sessions. 64
privacy sessions were ended using the gesture-override concept while the rest were ended using the app settings.
Overall, the participants’ success rate was ∼93.25% (SD = 0.024) from a total of 128 gesture usages, which was
∼12% higher than from the PrivacyShield method. This reflects the fact that the wrist gesture method is simpler in
provisioning a privacy configuration. The second attempt at gesture inputting recorded no failures. Participants
updated their privacy profile group at least 3 times (P11) during the deployment study. The maximum number of
updates was from P10. He updated the privacy profile group 14 times. The minimum and maximum times taken
to revert from a privacy session to the normal setting were 5.21 minutes and 53.38 minutes (M = 21.75, SD = 17.29),
respectively.
System utilization in the middle of device sharing. No participants configured their privacy settings

while their screen was turned on. This fact highlights the effectiveness of PrivacyShield over the wrist gesture
method in utilizing gesture commands use even during screen-sharing. In the next subsection, we discuss some
experiences of the participants which resulted in a lower number of privacy sessions with the wrist gesture
method.

11.2.3 User Experience. We evaluated user experience via three post-deployment surveys and two interviews.
The first survey compared satisfaction levels in using PrivacyShield against previously used privacy-provisioning
methods (from the design study questionnaire (§2)). The second survey asked participants to compare Priva-
cyShield with the wrist gesture method. Finally, the third survey measured user experience specific to Priva-
cyShield and the study. We conducted two one-hour interviews to collect their experiences during episodes of
using PrivacyShield. In the first interview, we investigated the change in the participants’ (P1 to P6) perceptions
(from their previously used methods) of configuring privacy settings after using PrivacyShield. In the second
interview, we explored the differences between their experiences of using PrivacyShield and the wrist gesture
method. We walked through the results together to ask follow-up questions on why such results occurred. All
interviews were recorded, transcribed, and reviewed. After open coding of the transcripts, we used axial coding
to examine user responses. For the first interview, we conducted affinity diagramming to narrow the codes into a
set of two main themes [49]: (a) Swiftness in configuring privacy settings; and (b) In-situ usability with selective
hide/show options. In the second interview, affinity diagramming narrowed the codes into a set of two main
themes: (a) In-situ flexibility in configuring subtle just-in-time privacy; and (b)Multi-situational gesture command
input accessibility.
Satisfaction of using PrivacyShield against previously used methods. For the participants who used

past methods to prevent information leaks (P1 to P6), we asked them to rate their satisfaction on effort required
to configure privacy settings and available privacy options (on a 6-point Likert scale, §2.1).
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0% 20% 40% 60% 80% 100%

Simple in use (Wrist gesture method)

Simple in use (PrivacyShield)

Multi-situational gesture command input accessibility (Wrist gesture method)

Multi-situational gesture command input accessibility (PrivacyShield)

In-situ Flexibility in Privacy configuration (Wrist gesture method)

In-situ Flexibility in Privacy configuration (PrivacyShield)

In-situ Usability and Privacy (Wrist gesture method)

In-situ Usability and Privacy (PrivacyShield)

1. Strongly disagree 2. Disagree 3. Neither 4. Agree 5. Strongly agree

Fig. 19. Participants’ ratings of PrivacyShield and the alternative wrist gesture method.

(a) Swiftness in configuring privacy settings. Overall, PrivacyShield improved the participants’ level of
satisfaction in terms of effort required in privacy configuration. The post-deployment questionnaire yielded a
higher satisfaction score (M = 3.66, SD = 0.51) as compared to the initial questionnaire (M = 2.33, SD = 0.81). The
difference was statistically significant (t = -3.38, p < 0.003). Four participants responded that their satisfaction
with hiding information has increased in comparison with the previously used privacy method. P3 recalled an
experience from her meeting with her friend, where her boyfriend sent her a message asking her to come on
Skype. She stated: “When using PrivacyShield, I don’t have to pay attention for inputting gestures. Earlier I used to
precisely slide the notification hide bar, else, it removed all my messages instead of showing me notification hide
options.” P5 mentioned: “One slide gesture and it was done! I can do this while talking to anyone. No-one was able to
notice.” P6 really liked the idea of swiftly hiding photographs at will. P6 stated: “It’s very easy to hide photos with
PrivacyShield, I don’t have to invest time in categorizing the photographs under private and public. Anytime I input
a gesture [command], I can get the desired result.”

Two participants, P2 and P4, whose satisfaction did not change in comparison to their previously used methods
stated that they already used the “always notification hide” option in their existing privacy configuring method.
With PrivacyShield, they are supposed to enter a pass-code every time they had to configure a privacy setting,
which was not very easy when hiding message notifications in front of observer(s). P4 mentioned: “Entering a
pass-code is still an extra overhead for me and I do not think that this is any different from the existing privacy
setting configuration step.”

(b) Satisfaction in using the selective hide/show options. All the participants were quite satisfied after
using PrivacyShield in terms of available privacy options. The post-deployment questionnaire showed a higher
satisfaction score (M = 4.3, SD = 0.51) than the initial questionnaire (M = 1.83, SD = 0.40); the difference was
statistically significant (t = -9.30, p < 0.01). P2 mentioned: “Using friend’s name as a gesture was easier than what I
thought before using PrivacyShield.” P1 stated: “Earlier when I was supposed to show a photograph, I made sure that
I perform the photo browsing task [discreetly] instead of the observer. Now [after using PrivacyShield] I don’t have to
bother about such situations while handing over the phone.”

Comparing satisfaction between PrivacyShield and the wrist gesture method. Participants rated both
PrivacyShield and the wrist gesture methods in terms of usability, flexibility, multi-situational gesture command
input accessibility, and simplicity in provisioning privacy configurations, on a 5-point Likert scale. Figure 19
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shows that most of the participants agreed or strongly agreed that PrivacyShield provided more usability and
privacy in case of device borrowing or screen sharing, with ∼8% agreeing in favor of the wrist gesture method. In
terms of flexibility in configuring privacy, PrivacyShield received over ∼60% agreement, while no participant
agreed in favor of the wrist gesture method. These results illustrate the low number of privacy sessions recorded
from Group A and Group B during the system deployment phase. In terms of multi-situational accessibility and
simplicity, more than ∼50% of the participants voted (in both the cases) in favor of PrivacyShield’s method. Many
participants also agreed or strongly agreed that the wrist gesture method was also simple in privacy-provisioning
tasks (∼58%). The differences between the two methods were not significant (Wilcoxon signed-rank tests, all p >
0.05).
Our post-deployment interview centered around two main themes which cover the important aspects of our

system’s design and implementation:
(a) In-situ flexibility in configuring subtle just-in-time privacy. Most participants agreed that Pri-

vacyShield provided more in-situ flexibility in configuring selective hide/show options. In response, the wrist
gesture method was not liked much by the participants. P10 mentioned: “In the beginning, I tried to add the rule
right after I faced the situation where my message was unwantedly seen. But it was weird to do it in front of that
person, so I would call to mind about the rule every night at home. This required some thinking effort regarding
whom I would meet the next day.” P9 mentioned: “Many times I was in a state of confusion, as I wanted to hide some
notification from a particular person only, but it [the wrist gesture method] resulted in hiding messages from all the
contacts in the [privacy profile] group. Overall, I couldn’t capitalize on the fastness of the [wrist gesture] method and
many times ended up in making excuses.” On a similar note, P4 stated: “I thought I had one name to hide message
notifications from and that too when I was driving with my lab-mates. Later, it turned out that one name in the
[privacy profile] group was not enough as all other notifications from other people popped-up. In such cases, I used
the selective show option.” P12 and P14 disagreed on the flexibility in configuring the selective hide/show options
in case of both PrivacyShield and the wrist gesture method. P12 stated: “Several times I missed inputting gestures
and also forgot to update the [privacy profile] group. I know it sounds ridiculous, but can’t the system configure the
rules for itself?”

(b) Multi-situational gesture command input accessibility. Many participants agreed that Priva-
cyShield provided better gesture command input accessibility, irrespective of the device’s placement or sharing
state. P4 said: “In most cases my phone was hooked to a placeholder in my car. I had to explicitly perform the task of
enabling privacy [in case of the wrist gesture method].” PrivacyShield was also effective in its use when participants
wanted to hide information while screen sharing their device. P13 mentioned: “It is nice! It [PrivacyShield] was
especially helpful whenever I wanted to hide some photos of mine in the middle of any photo-sharing task. Doing it
with the wrist gesture method was really not possible.”
PrivacyShield experience feedback. Based on their experience in using PrivacyShield, we asked the partic-

ipants about aspects which were specific to PrivacyShield and the user study, on a 5-point Likert scale (Figure 20).
Participants also explained their opinions on the decisions in a comments section.

Seven participants mentioned that they would like to use PrivacyShield in the future. All the participants who
disagreed or were neutral in their opinion left a comment to explain their decision. P12 and P14 said that the
effort required in achieving usability was very high. P2 and P4 were undecided whether to stick to their previous
methodology of keeping all the information hidden or use PrivacyShield. P11 stated that she was not certain
which privacy method (PrivacyShield or the wrist gesture method) to adopt. We further highlighted some of the
major findings from our experience-feedback study.
User-triggered system initialization was not easy for everyone. 7 participants agreed or strongly agreed that

system initialization posed a hurdle in entering gestures. P3 specifically mentioned: “Since I use PrivacyShield for
two different purposes [notification hide and photo hide], I would like the system to always be available.” For such
foreseen reasons, we have implemented a low-power co-processor version of the PrivacyShield prototype (§9).
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*and photos which you wanted to access during a privacy session

Fig. 20. User experience specific to PrivacyShield and the study.

Participants were asked whether they were unable to access any important notification(s) from a person or
were unable to view photograph(s) of any person who was sharing the same first-name initials. More than
two-thirds of the participants (9 participants) disagreed, while the rest gave neutral ratings. The 3 participants (P5,
P6 and P13) who had a neutral view point, stated that a few times they had difficulties in accessing information
(from message notifications), but privacy was more important to them in such cases. They all used the all-hide
option (“2-finger Right Swipe”) in such cases. Moreover, they were aware about the name-initial collision, and
therefore, were able to check any (expected) important message discreetly. Also, such events were not frequent
during their use of PrivacyShield.
Tagging photos using speech-generated name tags was not considered as an overhead by many participants.

Out of 8 participants who used Talking Album, neutral (P3, P9) or agreement (P14) votes were seen in cases
wherein the participants mentioned that they were supposed to be slow and clear when pronouncing the name
of a person. For such participants, explicit speech tagging was common (6 in the case of P3, 11 in the case of
P9, and 19 in the case of P14). The remaining 5 participants used speech tagging only once to categorize photos
under a given name and used Talking Album’s auto-tagging feature. Finally, all the participants had a common
view point that the app inherently helped them provide awareness in deciding whether to tag (or not) an image,
keeping in mind the privacy level associated with it. Previously (and in the wrist gesture method) they used to
filter images under a privacy profile group, based on whether they would be leaked to a person or not.

11.3 Summary of Findings
First, the overall participants’ success rate in using PrivacyShield was stable in the case of both groups. The
system design was easy to make participants adapt to the gesture usages. They were quick in drawing gesture
commands which helped them in swiftly configuring their desired privacy settings. Many participants also got
accustomed to reverting a privacy configuration to the normal setting using the override “action” commands.
Second, the type of gesture commands used by the participants to activate a privacy session was not more
than two. Also, the number of names used was not more than 4. However, we figured out that the need to hide
important information is sporadic and may often not be forethought. Therefore, a simple privacy-provisioning
method (the wrist gesture method) was found limiting in providing participants in-situ flexibility to achieve

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 76. Publication date: June 2018.



76:34 • S. Pushp et al.

a desired privacy configuration. From our experience study, we also figured out that people prefer to attain a
desirable privacy configuration right after perceiving the risk of a tentative information leak. Third, PrivacyShield
was able to provide scalability in hiding multiple contacts and name-tagged photos. In our deployment study, 34
privacy sessions (∼22.2%) were initiated with the help of selective show-gesture commands. This additionally
shed light on the fact that participants were aware of the nature and capability of gesture commands and usages.

12 RELATED WORK

Non-touchscreen RFID based gesture interaction. Before implementing the PrivacyShield mock-up system,
we explored some non-touchscreen and RFID based gesture interaction techniques, e.g., LLAP [52], FingerIO
[41], and Pantomime [46]. LLAP [52] and FingerIO [41] uses CW (Continuous Wave) signal and OFDM pulses to
understand phase changes of sound signals to locate fingers. Both techniques allow device-free tracking of finger
movement but are slow in drawing gestures and does not work for non-cursive gesture strokes. Pantomime [46]
uses two RFID tags on an object and make use of a single antenna in the vicinity to track device motion. This
approach is also slow in drawing gestures and depends upon the availability of a RFID reader/antenna. Since we
target in-situ privacy configuration for privacy situations occurring sporadically in nature, RFID based gesture
techniques do not fit our requirement.

Mobile systems for privacy protection. Several mobile systems have been proposed to protect unwanted
access to specific applications and data in phone- sharing or borrowing situations [34][22][42][45]. xShare [34]
enables multiple virtual environments on a single phone, each with different data and app access permissions.
Similarly, DiffUser [42] provides differentiated user access control to system resources. Cells [22] virtualizes
multiple android runtimes for different uses. These systems focus on access control to mobile data and resources,
and they all require explicit configurations from users to change access permissions or switch between virtual
environments. Our work is complementary to them, as we focus on how to make the configurations subtle and
dynamic. In addition, TreasurePhone [45] proposes the concept of context-aware data-protection on mobile
phones, such as providing different permissions depending on the user’s location and actions. It focuses on a user
study on the concept without building a working system.

Subtle and deceptive interactions. There are some studies on subtle and deceptive interactions [21][23] which
focuses on miniaturizing and reducing the cognitive load of interactions. Without building solid systems, they
demonstrate the need of subtle interactions in various scenarios and thus are motivational to our work.

Techniques on gesture recognition.Many research efforts have been spent on various gesture-recognition
techniques, such as tablature based [31] and example based [35][51][53]. Optical Character Recognition (OCR)
is a widely used technique for handwriting recognition [25][26]. Most of those existing approaches are either
designed to work assuming that visual feedback is available or depend on users for character segmentation, and
thus, cannot address the unique challenges in recognizing subtle privacy-provisioning gestures, particularly the
gesture-overlap problem.

Gesture shortcut technique. GestureOn presents an idea of using gesture shortcuts [36], but does not provide
a detailed implementation on the system part. Moreover, GestureOn leverages Gesture Search framework which
limits in drawing fast gesture inputs. Though this work is motivational, PrivacyShield is the first work which
provides an end to end system implementation and addresses all the intricacies in developing the system.

Soft keypad based approach. Soft keypads consume the mobile phone’s limited screen real estate, and thus
limit users to draw a gesture in a given space. Pull-down or pull-up based on-screen keyboards take longer time.
Moreover, it takes time for users to scan and locate the correct keys [55].
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13 DISCUSSION

Limitations. Our current PrivacyShield system and its user study evaluation is limited in several aspects. First,
our usability results are inferential. This type of study is difficult (owing to custom device use) and does not capture
a person’s personality with the system use. Moreover, results are subjected to frequency of device borrowing and
sharing situations. Since the frequency of device borrowing and sharing situations in the current study is low,
future work should consider a larger sample. Second, it supports only lower-case characters. Nevertheless, we
plan to support upper-case characters to further improve the capability of PrivacyShield.

Knowledge of the observer and subtlety in inputting gestures. It is possible that if PrivacyShield enabled
devices become prevalent, the set of possible privacy configurations may also become well known, and therefore
easier for observers to spot. However, if this happens, then the set of possible privacy customizations will be so
great as to make observers suspicious of every time the user interacts with her device.

Future Work. At last, we will continue to improve the gesture-recognition algorithms and the UI design to
optimize the system performance and to make PrivacyShield easier to use. We will also continue to develop more
PrivacyShield apps. We also plan to open source our PrivacyShield implementation along with the interesting
testing application we built.

14 CONCLUSION
In this paper, we have designed, implemented and evaluated PrivacyShield, the first subtle just-in-time privacy-
provisioning system on smartphones. PrivacyShield allows users to use touch gestures to dynamically change the
privacy-protection policies of the system, and thus bridges the gap between privacy and usability in contextual
privacy provisioning. We design a novel stroke-based segmentation and recognition approach for gesture
recognition, and develop several power-optimization techniques inside the device kernel. Evaluation results using
real-user data show that our gesture-recognition approach is swift and accurate, and our power-optimization
techniques are able to effectively reduce the power consumption of PrivacyShield.
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