CISS (Cooperative Information Sharing System): An Efficient Object Clustering Framework for DHT-based Peer-to-Peer Applications

Jinwon Lee, Hyonik Lee, Seungwoo Kang, Sungwon Choe, Junehwa Song

Network Computing Laboratory
EECS department, KAIST

Motivation – New applications

MMOG (Massively Multiplayer Online Game)

- <update message >
- Location: 60, 30

Multi-dimensional Range Queries

- Product=Electronics.Computer.HP.*

P2P Catalog System
Problem – Many DHT lookups

Periodic location updates – semantically related objects

Unrelated Keys

Multi-dimensional Range query

MMOG

P2P Catalog System

Solution Approach – Object clustering

Periodic location updates – semantically related objects

Locality Preserving Load Balancing

Routing Protocol

LT: Local Preserving Function
Related Work

- Most recent DHT extensions [A.Gupta, ‘03], [A.Kothari, ‘03]
 - Simple one-dimensional range queries
 - Not compatible with existing DHT implementations
- CLASH [A.Misra, ‘04] and PHT [S. Ratnasamy, ‘03]
 - Extensible hashing
 - Adaptive object clustering, range queries
 - No multi-dimensional range query support
- Squid [C.Schmidt, ‘03]
 - Multi-dimensional range queries over DHTs
 - Limited scalability due to query congestion

System Architecture

- Three-tier P2P system
 - CISS: Internet-scale data management system interacting with P2P applications
 - DHT: basic lookup layer
Locality Preserving Function (LPF) (1/2)

- Construct \(N \)-bit keys from objects while preserving locality

- 1st step – encoding each attribute to an \(M = \frac{N}{D} \)-bit key
 - Numerical: rescaling by multiplying a coefficient
 \[
 \{x=60 \land y=70\} \left(\times \frac{2^N}{\text{MaxAttributeValue}}\right) \rightarrow \{x=1010 \land y=1011\}
 \]
 - String: hash-concatenation encoding scheme
 - Hashing the value of each level in the hierarchy into \(M/d \) bit values
 - Concatenating the values into an \(M \)-bit key

- 2nd step – Mapping multiple keys to an one-dimensional \(N \)-bit key
 - Hilbert Space Filling Curve (SFC)
Routing Protocols (1/2)

- Minimize the number of costly DHT lookups

- *Caching-based update routing protocol*
 - Key range cache of the most-recently-searched rendezvous node

Routing Protocols (2/2)

- *Forwarding-based query routing protocol*
 - Forwarding a query to a succeeding peer node
 - Utilizing the object clustering property of CISS
Locality Preserving Load Balancing (1/2)

- Preserve locality after load balancing
 - *cf.* virtual server approach
- Two load balancing schemes
 - Local-handover, global-handover
- **Local-handover**
 - An Overloaded node hands over a part of its own key range to one of its neighbor nodes
 - Cascading load propagation can occur

![Diagram](image)

Locality Preserving Load Balancing (2/2)

- **Global-handover**
 - An Overloaded node hands over a part of its key range to a victim node
 - Victim node
 - the most lightly loaded node among the randomly probed nodes
 - Cascading load propagation doesn’t occur

<table>
<thead>
<tr>
<th></th>
<th>Local-handover</th>
<th>Global-handover</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHT routing table updates</td>
<td>$O(\log S)$ messages</td>
<td>$O(\log S)$ messages</td>
</tr>
<tr>
<td>Object Transferring</td>
<td>From the overloaded node to the neighbor node</td>
<td>From the overloaded node to the neighbor node From the victim node to the successor Of victim node</td>
</tr>
<tr>
<td>Victim Probing</td>
<td>None</td>
<td>n DHT lookups</td>
</tr>
</tbody>
</table>

Load Balancing Cost
Experiments (1/2)

- Data Update Performance
 - Setting
 - Topology – 1000, 10000, 100000 nodes
 - Map – \([0, 2^{12}] \times [0, 2^{12}]\)
 - Mobility model – ns-2 random waypoint model
 - Result
 - Low mobility – High hit ratio
 - The range of client movement is much smaller than the range managed by the responsible server
 - Small number of nodes – High hit ratio
 - The range managed by each node is large

![Hit Ratio of the key range cache](image)

Experiments (2/2)

- Multi-dimensional range query performance
 - Setting
 - P2P catalog system
 - 2 attributes: each attribute–4 levels
 - Result
 - The total # of messages for query processing is significantly reduced.
 - When the query range become large – # of DHT lookups significantly reduced
 - Most of queries don’t require query forwarding.
Conclusion & Future work

- Conclusion
 - CISS is a framework that supports an efficient object clustering for DHT-based P2P applications, especially data-intensive and multi-dimensional range query-intensive applications.
 - LPF is used instead of a hash function.
 - Routing protocols effectively reduce costly DHT lookups.

- Future work
 - Technical details for locality preserving load balancing
 - Overload detection
 - Load estimation
 - Victim selection