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ABSTRACT
Imagine a densely packed crowd that gathers to convey a common
message, such as people in a candlelight vigil or a protest. We envi-
sion an innovation through mobile computing technologies to em-
power such a crowd by enabling them simply to hold their phones
up and create a massive collective visualization on top of them.
We propose Card-stunt as a Service (CaaS). CaaS is a service en-
abling a densely packed crowd to instantly visualize symbols us-
ing their mobile devices and a server-side service. The key chal-
lenge toward realizing an instant collective visualization is how to
achieve instant, infrastructure-free, decimeter-level localization of
individuals in a massively packed crowd, while maintaining low la-
tency. CaaS addresses the challenges by mobile visible-light angle-
of-arrival (AoA) sensing and scalable constrained optimization. It
reconstructs relative locations of all individuals and dispatches in-
dividualized timed pixels to each one so that they can do their part
in the overall visualization. We evaluate CaaS with extensive ex-
periments under diverse reality settings as well as under synthetic
workloads scaling up to tens of thousands of people. We deploy
CaaS to 49 participants so that they successfully perform a collec-
tive visualization cheering up MobiSys.
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(a) Candlelight vigil. (b) Card stunt at a stadium.

Figure 1: Massive collective visualization examples.

1. INTRODUCTION
Consider a densely packed crowd gathered in a public space to

express a common voice to the community. Such a scene may re-
semble that seen in Figure 1a, in which over 4000 people partici-
pate in a candlelight vigil for memorial and social awareness pur-
poses [7]. Imagine they hold not candles but their phones; each
phone automatically glows on and off in a coordinated way such
that the entire set of phones collectively visualize a massive sym-
bol or image on top of the crowd.

Why would we want it? It will provide a new prominent medium
empowering the crowd’s message and attracting the community to
listen; people will be able to express their message in a more im-
pactful and visually compelling way by synthesizing their scattered
voices, banners, and flags into a single massive one. Fundamen-
tally, it would be an innovation in the way that mobile computing
technologies facilitate a new form of instant collaborative crowd ac-
tivities in the real world, through which people can stimulate their
community. In application-wide, such a mobile technology would
serve not only public activism but also diverse collective visualiza-
tion events, such as commercial promotions, flash mobs, sport fans,
and collective artistic works, etc.

In this paper, we propose Card-stunt as a Service (CaaS), metaphor-
ically named after the traditional massive sport-supporting activi-
ties that could be seen in a stadium (see Figure 1b). CaaS is a new
genre of mobile-crowd service to help densely packed crowds ex-
press their messages with impact. It enables a crowd to instantly
and collectively visualize textual or graphical symbols using their
mobile devices. For instance, Figure 2 demonstrates a small group
of people using CaaS to perform small-scale, collective visualiza-
tions. Imagine a visualization of this kind created by a much larger
number of people and at a higher people-per-symbol density.

How would we realize a dynamic, high-quality collective vi-
sualization today without CaaS? We refer to the process of plan-
ning a traditional card stunt; it requires month-long planning for
each venue, rehearsals for specific participants, and often signifi-
cant budget to hire a professional production [5]. Such a huge cost
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(a)

(b)

Figure 2: Small-scale demonstrations of CaaS with 7×7 = 49 participants. (a) Night mode with glowing phone screens. (b) Daylight mode
with pieces of cardboard raised or flipped upon individual cues given to each user’s phone.

of time, money, and labor would be impractical to most people in
our collective visualization scenarios.

CaaS requires none; as soon as a crowd packs into a place like a
public square, CaaS lets them instantly create collective visualiza-
tions. CaaS automatically determines each user’s relative location
within the crowd, divides a symbol into a 2-D matrix of pixels, and
assigns each pixel to the mobile device at the right location. Each
device locally displays the assigned pixel in full-screen. To visu-
alize time-varying symbols, each mobile device may be assigned a
timed sequence of pixels. On occasions when sunlight is so strong
that a phone’s display is indiscernible at full-brightness, CaaS may
glow a phone’s flashlight instead at the visualization phase. Alter-
natively, users may improvise physical cardboard with each side
colored differently. CaaS can send cues to users’ phones, directing
them to flip the cardboard and ensure a visual signal even in bright
sunlight as shown in Figure 2b.

Our unique challenge to realize an instant collective visualiza-
tion is how to achieve (1) infrastructure-free, (2) decimeter-level
localization of individuals, (3) in a densely packed crowd, while
(4) maintaining a low latency for people possibly scaling up to tens
of thousands. We do not assume any localization infrastructure like
beacons [45] or WiFi access points [41, 49], as those are unlikely
in typical gathering places like public squares or wide boulevards.
Likewise, existing peer-to-peer localization schemes [21, 58, 68,
72] are not an option, as the one-by-one pair-wise sensing is im-
practical to handle the high density of people in a crowd.

CaaS tackles those challenges through elaborate mobile-side visi-
ble-light angle-of-arrival (AoA) sensing and server-side constrained
optimization. To ensure CaaS is suitable for real-world deploy-
ment, we carefully devise and implement: (1) fast and robust multi-
target visual AoA observations under diverse lighting conditions,
partial occlusions, and varying phone orientations when handheld,
and (2) scalable and accurate computation strategies to reconstruct
the optimal device locations given all the AoA observations. We
built a working prototype and conducted extensive experiments to
evaluate the step-by-step performances of CaaS under diverse con-
ditions discussed above. We deployed CaaS to 49 co-located par-
ticipants, where CaaS demonstrated successful reconstruction of
individual locations at a typical error radius of 15 cm.

Our contributions are three-fold. First, we set forth the agenda
that mobile computing technologies empower people of a com-
mon voice and convey a massive real-world impact. Second, we
propose CaaS, a mobile service enabling a densely packed crowd
to create collective visualizations in an instant, impromptu, and
infrastructure-free way. Third, we present our CaaS architecture,
novel sensing and computing strategies, and real-world implemen-
tation issues to realize accurate reconstruction of densely packed
individuals’ locations within a reasonably short time.

2. CROWD CHARACTERISTICS
As for the target applications of CaaS to enable large collective

visualization, we mainly consider real-world events with densely
packed crowds that are relatively stationary and strongly motivated
to participate. Examples may be seen in the form of organized fan
activities in stadiums [18], commercial promotions [14], or public
campaigns [4]. Aside from these existing examples, we also envi-
sion that public activism could be a new promising area where CaaS
would make an impact. Although large-scale events for public ac-
tivism are sometimes stereotyped as involving high mobility and
unorganized dynamic actions, we note that there exist real protests
with peaceful, stationary, and well-organized crowds. Recent ex-
amples include the series of candlelight vigils in South Korea in
2016 [15, 20] and the Romanian protests in 2017 [13]. CaaS tar-
gets such relatively stationary crowds so that one-time localization
results would remain valid for the visualization session.

We analyzed the characteristics of such crowds based on news
articles, video footage, journalism literature [9, 13, 15, 20, 36].
We found a few common elements. Notably, their inter-person dis-
tances are very small; a participant is most likely surrounded by
others within arm’s length. Our finding is supported by the studies
of political gatherings, (e.g. [36]) which report an average inter-
person distance of 0.75 meters. Our analysis also indicates that
crowd participants are well-organized and highly motivated. To
achieve their goal, they cooperate with a few coordinators in front
of them giving actionable cues or chants [9]. Crowd participants
will often tolerate significant physical discomfort, as well as finan-
cial and temporal cost in order to achieve their goals. For exam-
ple, the 2016 South Korean candlelight vigils [15, 20] recurred ev-
ery weekend for five months, during which hundreds of thousands
of people gathered, despite freezing temperatures. Similarly, sport
fans performing card stunts in a stadium often practice for weeks
and pay nontrivial costs (e.g. even a simplest card stunt may cost
USD 1 – 3 per person, a higher quality card stunt may cost USD 6 –
29 per person; The rates may further vary depending on the number
of symbols and the complexity of the stunts [5]). We believe that
CaaS would be highly attractive to such crowds not only in quickly
creating massive visualizations but also resulting in very small cost
and minimal effort, e.g., holding up their phones overhead for a
while, which would be negligible compared to conventional efforts.

2.1 Requirements of CaaS
Imagine a target crowd like those described above. To support

an instant collective visualization above such a crowd, CaaS has to:
(1) obtain each participant’s relative location in the crowd, (2) map
each participant to a pixel of the symbol to visualize, (3) let each
participant’s device know the assigned pixel (or a timed sequence
of pixels), and (4) complete (1)–(3) in a short, interactive time.
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Figure 3: People raising their phones overhead

In this paper, we address the key technical challenges mainly
stemming from (1) and (4). Note that (2) and (3) are straightfor-
ward once (1) is complete. For (1) and (4), we derive the following
specific localization requirements from our crowd characteristics.
• Infrastructure-free and off-the-shelf phones only. A crowd may

gather in a public square or a wide street, which do not generally
have fine-grained localization infrastructure like beacons. Crowd
members require no special device but their phones.

• High-density crowd support. A collective visualization event
deals with densely packed people of hundreds or more, with of-
ten an average spacing of only 0.75 meters between each other [36].
Relative localization should support such a density and scale.

• Decimeter-level location accuracy. In such a high-density crowd
we should keep individual location errors within one’s tiny per-
sonal space. Higher errors may cause swapped pixels in the vi-
sualization, degrading the readability.

• Fast and scalable reconstruction. Once a crowd forms, the rela-
tive localization should be completed in a reasonably short time
so that the visualization can start momentarily. Members of both
small and large crowds (tens to tens of thousands) should not be
required to wait too long to negatively impact interactivity (e.g.
10 seconds unless they are given another task to focus on [53]).

2.2 Limitations of Existing Approaches
Infrastructure-based localization: GPS is commonly available in
smartphones. However, its typical location error ranges from 5 to
10 meters [71], which is insufficient to distinguish adjacent peo-
ple in the crowds. Coin-GPS addresses the indoor unavailability
of GPS [54], but the issues of low accuracy and high-gain an-
tenna requirement remain. Higher accuracies are achieved by other
techniques relying on pre-installed infrastructure such as WiFi ac-
cess points [49], beacons [45], and modified LEDs [40, 43, 44].
However, such infrastructure is neither generally available in pub-
lic spaces, nor is it likely to be installed by crowds on the spot.
For example, a state-of-the-art system of visible light sensing [44]
achieves 2D localization error of 4 cm, but requires an indoor space
with extensive instrumentation, i.e., hundreds of LED lights on the
ceiling and hundreds of photodiodes on the floor.
Peer-to-peer relative localization: Peer-to-peer ranging and trian-
gulation among devices is an alternative. Existing techniques have
a pair of devices exchange sound chirps or wireless packets and
measure TDoA (time difference of arrival) or ToF (time of flight),
then convert them into distances [58, 68, 72]. Although those state-
of-the-art systems achieve centi- or decimeter level accuracy that is
sufficiently accurate for CaaS, the challenges come from a large
number of people and limited channel capacity making simultane-
ous multi-pair sensing difficult. For example, BeepBeep [58] re-
quires all the devices to generate and listen to sound signals one
after another. It needs an interval of one second to separate each
adjacent sound signal. Chronos [68] takes much less time, i.e., 84
ms, to range a single pair of devices. However, nearby devices
around the ranging pair should wait so as not to interfere with this
pair’s ranging process, as Chronos actively probes all WiFi chan-
nels between the pair. In both techniques, the total ranging time
for all N devices would be proportional to N; they quickly become
intractable in massively packed scenarios like we have assumed.

In short, CaaS deals with high people density where one-by-one
pair-wise sensing is infeasible for timely all-pair relative localiza-
tion, not to mention other issues aggravated in high-density crowds
such as elevated channel noise levels and multipath effects.

3. CaaS DESIGN

3.1 Vision-based Collective Localization with
Crowd Cooperation

For timely relative localization of all individuals in a dense crowd
with no infrastructure and no known reference locations, CaaS adopts
visible-light AoA (angle of arrival) observations between cameras
and displays of the participants’ phones, followed by server-side
optimization. This offers key advantages to the CaaS context: mul-
tiple pairs can sense simultaneously while hardly interfering with
each other. Most smartphone cameras have sufficiently good im-
age resolutions and optical systems capable of high-precision AoA
observation from a light source within their FoV (field of view);
the multi-path issue is hardly a concern compared to wireless- or
sound-based sensing. Collectively processing mobile-side AoA ob-
servations, server-side optimization enables all devices’ relative lo-
cations to be reconstructed in an accurate and timely manner.

3.2 Use Case
Applying the approach of vision-based collective localization,

we design CaaS for target crowds described in Section 2 to realize
collective visualization under the following use case.
1. Once a crowd packs together in a public square for a collective

visualization event, each participant runs the CaaS Mobile Ap-
plication. Each phone contacts the server and joins the event.

2. The event coordinator’s device provides a user interface through
which she can choose a symbol to visualize, see how many peo-
ple have joined, and broadcast a cue to them. The symbols could
be pre-determined through the participants’ consensus in online
communities prior to the event. Once a sufficient number of
people have joined, the coordinator triggers a request to each
users’ phone, instructing them to raise their phones overhead.

3. People raise their phones overhead to maximize the line-of-sight
chances among the devices, as shown in Figure 3. The applica-
tion gives audio-tactile feedback to help a user hold the phone
at a preferred orientation.

4. Each phone begins visual observation through its camera, while
displaying an encoded identifier on the screen. The application
notifies a user to lower the phone when either a certain number
of distinct devices have been detected or a timer expires.

5. The observations are sent to the server; the participants wait un-
til the server computes their relative locations. They may keep
their arms lowered during server computations.

6. Soon enough (e.g., a few seconds), each phone is assigned a
pixel specific to its relative location ensuring that each user pro-
vides the correct part of the symbol to be visualized.

7. The phone glows the assigned pixel color on full screen. In
bright daylight, users might choose to raise a piece of cardboard
upon a cue from the phone. The pixels or cues change syn-
chronously if they are given a timed sequence.

8. The coordinator may choose the next symbols without reperfor-
ming the localization as long as the crowd remains stationary.

3.3 Main Technical Challenges
To realize the high-level approach above, we have faced multi-

ple technical challenges in reality. In particular, Section 3.4 through
Section 6 discuss our system architecture, key techniques, and ex-
periments to address the following main technical problems:
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Figure 4: CaaS architecture.

• On the mobile-side, CaaS requires fast and robust multi-target
visual observations under diverse lighting conditions, partial oc-
clusions, and handheld phone conditions. Target device screens
are seen as too small to observers’ cameras, e.g., a 5-inch screen
at 6 meters away makes only a few pixels on an observer’s FoV.
Even worse, we found that extremely diverse lighting conditions
in reality make it very hard to identify any content on target
screens — too dark under daylight and white-saturated at night.
We address these challenges to visual observation in Section 4.

• On the server-side, given all the mobile-side AoA observations,
CaaS requires accurate reconstruction of all individual devices’
locations quickly enough not to negatively impact interactivity.
The computing time for optimal reconstruction should remain
short even for tens of thousands of people. Despite accurate
mobile-side observations, residual sensor drifts and camera dis-
placements still cause erroneous reconstruction. We also en-
counter that the reconstruction time rapidly grows for increasing
numbers of participants, e.g., more than an hour for a thousand
people. We address the server-side challenges in Section 5.

In addition to the above technical issues, there are a number of
human and environmental factors that have the potential to strongly
impact the success of CaaS. These include (i) physical discomfort
associated with holding a phone for extended time periods, (ii) the
dynamicity of crowds, (iii) individual height differences, (iv) cel-
lular connectivity, and (v) time synchronization. In Section 7, we
explore the issues in detail and discuss how most of them would be
non-critical or transient, based on our real-world observations, our
conjecture therefrom, and feasible solutions.

3.4 CaaS Architecture
The CaaS architecture consists of mobile applications and server-

side services (Figure 4). Each instance of the CaaS Mobile Appli-
cation observes local AoAs and displays the assigned pixels. The
server-side CaaS service collects the observations, computes all de-
vices’ relative locations, and determines the pixel for each device.
CaaS Mobile Application. The CaaS Mobile User Interface pro-
vides a user with user interfaces to join a collective visualization
event, view original images or symbols to be displayed in an event,
and give individual cues to raise a phone overhead. It also provides
a feature for the coordinators to choose one of the images or sym-
bols that the participants agreed upon beforehand, and to broadcast
notifications to the participants such as “Raise your phone.” Upon
joining an event, the Symbol Sequence Encoder retrieves a device-
specific identifier (ID) from the server, encodes it into a visual sym-
bol sequence, and displays the code on its screen. At the same
time, the Symbol Sequence Decoder detects and decodes symbol
sequences from the main camera. For each code decoded, the AoA
Observer measures its AoA from its on-image location and applies
sensor compensations. The decoded ID and its AoA values are sent
to the server. The Visualizer displays the pixels in sequence, which
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Figure 5: Hue transition-based symbol encoding and packet format.

are assigned to the device by the server. The key challenges are to
detect multiple symbol sequences and measure AoAs under diverse
lighting conditions, partial occlusions, and varying phone orienta-
tions. Section 4 discusses these steps in more detail.
Server-side CaaS Service. The Observation Collector collects
the mobile-side observations. Once collection is done, the Crowd
Reconstructor computes individual devices’ relative locations us-
ing the observations. To achieve this, our Optimization Problem
Builder builds a constrained optimization problem describing the
optimal locations of the devices for the given observation results.
The Partition Planner intelligently divides the problem into smaller
pieces with low inter-dependencies, and invokes one or more Solver
Instances. Once the optimization is complete, the Crowd Recon-
structor returns the reconstructed locations to the Pixel Dispatcher,
which determines a pixel for each device and dispatches it to the
corresponding CaaS Mobile Application. The key server-side chal-
lenges lie within the Crowd Reconstructor, which performs sub-
meter localizations of densely packed devices within a short and
scalable response time. Section 5 presents our basic strategy and
advanced issues faced in reality.

4. OBSERVING RELATIVE ANGLES
The key steps in mobile observation are (1) detecting visual sym-

bol sequences seen on an observer’s camera, (2) decoding each
symbol sequence to identify an observed device, and (3) measuring
the AoA from a device. This section presents our symbol coding,
real-world issues, AoA measurements, and observing performance.

4.1 Designing Visual Symbol Sequences
Our collective visualization scenarios pose a number of chal-

lenges to mobile visual observations. First, the target devices are
seen as too small, e.g., a 5-inch screen as far as 9 meters away.
Furthermore, this represents a best case, since in reality the target
phone is handheld overhead, making its observed representation
slanted or partially occluded. Second, the external lighting condi-
tions are highly diverse, ranging from a sunny street to a midnight
candlelight vigil. Third, multi-target observations should be com-
pleted quickly so that people do not hold their phones overhead for
long. These challenges make spatial codes inviable [29, 32, 70]. In
our experiments, even a state-of-the-art technique [32] fails to sup-
port code detection on a small screen at the envisaged distances,
even if occlusions are completely avoided.

Our alternative is to adopt temporally coded full-screen symbols
inspired by [52, 61]. We favor a lightweight design in order to
enable real-time multi-target detection, and find optimal parame-
ters to ensure a high throughput and thereby quickly complete the
observations. We encode data (e.g., device ID) into a sequence of
k-level quantized hue values. Hue is a component in HSB (Hue Sat-
uration Brightness) color spaces, representing a chromatic element
of a color orthogonal to brightness and saturation.

Figure 5b illustrates our packet structure, beginning with a lead-
ing delimiter symbol followed by data symbols and CRC (Cyclic
Redundancy Check) symbols. Note that we apply differential cod-
ing; a symbol is not defined one-on-one for each hue level but for a
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Figure 6: Phone screens under different lighting conditions with
(AE: auto, CE: custom-found) exposure settings.

temporal hue transition. This use of differential coding has the ef-
fect of improving throughput. Our early implementations used one-
on-one coding, but testing revealed that observing devices can of-
ten encounter randomly occurring non-symbol hue sequences that
have a valid packet structure, i.e. the sequence begins with the de-
limiter hue and then contains a sequence of non-delimiter cues; the
decoder rejected such false-positive sequence at the CRC checker,
but the high frequency of such false-positives requires an extended
CRC to ensure that all occurrences are reliably rejected.

By contrast, our revised design with differential coding greatly
reduces the occurrences of such false-positive sequences. Since
each legitimate packet is expected to change its hue level between
every consecutive pair of frames (a scenario that is unlikely to nat-
urally occur), any pixel areas whose hue levels do not change be-
tween frames can be rejected early even before reaching the CRC
checker. Overall, our differential coding approach has a reduced
reliance on CRC when compared to the one-on-one coding ap-
proach, achieving an equivalent false-positive rejection rate with
much fewer CRC symbols per packet. Thus we can make each
packet shorter, resulting in higher throughput. Replacing the single-
symbol delimiter with a multi-symbol preamble might be an alter-
native to early rejection of non-packet sequences, but it makes a
packet longer than using differential coding.

Figure 5a illustrates our mapping table for a case of k = 6, which
maps a hue transition pair onto a base-5 digit, i.e., a symbol. Note
that we determined k = 6 through extensive experiments, which are
discussed in Section 4.2. For the leading delimiter, we assigned the
digit “4” among the available five digits. We used the remaining
available digits (0, 1, 2, 3) for the device identifier and the CRC.
Therefore, the 9-symbol packet with 6-level hue quantization can
represent 44 = 256 different device identifiers. The sender repeat-
edly transmits this packet in full-screen.

4.2 Code Parameters
Exposure settings. In theory, the hue component is defined or-
thogonally to the brightness component. Still, we found that ex-
ternal lighting conditions often cause the observer to see a dis-
torted hue value that is large enough to result in a wrong quanti-
zation level, i.e., a symbol error. Figure 6 shows pictures of phone
screens; the one taken under daylight is too dark to recognize the
hue, whereas the other taken at night is white-saturated. This is
mainly caused by the auto-exposure feature of cameras. When tak-
ing a picture, this feature automatically optimizes the ISO value and
exposure time based on the ambient brightness. We overcome this
issue by enforcing custom exposure settings for three major out-
door lighting conditions—night, daylight-ambient, and daylight-
backlight (i.e., camera faces the sun). Figure 7 shows the mean
errors of the observed hue values from those originally transmit-
ted. Our experiments show the smallest hue value errors at ISO
200 and 1/400 s exposure time both in night and daylight-ambient
conditions, whereas in a daylight-backlight condition, the smallest
hue value errors are found at at ISO 100 and 1/400 s exposure time.
The errors soar once the exposure is too long to saturate the image
sensor. Figure 6 shows the effectiveness of these custom settings.

The CaaS Mobile Application automatically determines the cur-
rent lighting conditions using the time of day and built-in sensors
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and manipulates the exposure settings accordingly using Camera2
APIs available in Android 5.0+. Given the phone is outdoors, it
is obvious to determine either daylight or night condition from
the time of day. To further determine either daylight-ambient or
daylight-backlight conditions, CaaS first computes the sun’s celes-
tial orientation based on the date, time, and geographic location of
a device. Then it sets the daylight-backlight condition if the sun
would be seen within the camera’s FoV at a current device’s orien-
tation. CaaS would be able to adopt an advanced image processing
technique to determine whether an image is back-lit [23].

Hue quantization levels. A higher throughput is desirable to
help users lower their phones earlier. A finer-grained quantization
level (i.e., a higher k) in our coding gives higher bits per symbol.
However, a higher k may increase SER (symbol error rate) which
degrades the throughput. Thus we need to find a good value of
k at which the effective throughput is maximized. Interestingly,
we found good k values differ across the display types: OLEDs
and LCDs. Experiments in daylight ambient conditions, using a
three-meter distance between devices and optimal exposure set-
tings, show the best throughput of 1.11 packets at both k = 6 and
7 for OLEDs; k = 6 achieves zero SER, whereas k = 7 increases
the bits-per-symbol but the throughput remains the same, since the
increment is nullified by the degraded SER. For LCDs, the opti-
mal k value is 14. Further experiments indicate an optimal k value
of 7 (OLED) and 20 (LCD) in both daylight-backlight and night
conditions. Since CaaS has no way to know the display type of an
arbitrary target display a priori, use of the lower k value for each
lighting condition is most appropriate. For our prototype, we select
a conservative k value of 6 for use across all lighting conditions

Symbol duration. For given k quantized hue levels, another pa-
rameter impacting the throughput is the symbol duration; a shorter
symbol duration gives higher bits per symbol but increases SER.
Most smartphone displays refresh at 60 Hz [17]. However, most
smartphone cameras capture frames at a maximum of 30 fps, where
Nyquist-Shannon sampling theorem gives the theoretical minimum
symbol duration of 67 ms (= 15 Hz symbol rate). Figure 8 reports
the throughput for varying symbol durations. For 70 ms daylight,
the higher bits per symbol and SER break even, resulting in compa-
rable throughput with 100 ms. Our final choice is 100 ms due to the
real issue of occasional frame drops from cameras, which having 3
frames per symbol is more robust against.

At this symbol duration, a single 9-symbol packet transmission
takes 1 second because a the packet is encoded into a sequence of
9+1 = 10 hue levels. However, as discussed earlier, CaaS Mobile
Application repetitively transmits the same packets. If 9-symbol
packets are concatenated N times, this data stream will be encoded
into a sequence of N × 9+ 1 hue levels. Thus, the average time
duration per packet will converge to 900 ms as N increases.

4.3 Real-world Issues
Rolling shutter effect. We experienced that observer devices of-
ten detect incorrect hue transitions that include a phantom hue level
that was not shown either before or after the transition at the target
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Figure 9: An observer Di’s camera sees a target D j’s display.

screens. This is a result of rolling shutter effects, an anomaly in
digital photography whereby a single frame consists of pixels each
of which is captured at slightly different times. The reason is that
an image sensor usually captures a frame by rapidly scanning the
sensing pixels vertically or horizontally, not taking a snapshot of
the entire scene at once. Figure 10a shows an example frame af-
fected by rolling shutter. This frame is captured while the shown
target device was making an R-to-G transition. Apparently, the red-
dish pixels around the bottom-left corner are captured slightly be-
fore the transition, whereas the greenish pixels around the top-right
corner are captured slightly after the transition. The yellowish pix-
els in the middle are exposed to both colors at the very moment of
transition, resulting in averaged colors. Due to the yellowish pix-
els, an observer device may mis-decode this frame into either R-to-
Y or Y-to-G transitions. We filter out this anomaly by exploiting
the characteristics of the effect: 1) a wrongly quantized hue level
is a mixture of two valid hue levels detected consecutively, and 2)
this hue level is seen only from a single frame. Note that we also
check the symbol duration to ensure the valid duration of 100 ms
(3 frames). But this duration alone is not a reliable measure due to
frame drops and inconsistent frame intervals in reality.

Real-time image processing. To ensure the real-time constraint of
33 ms per frame, we implemented the Symbol Sequence Decoder in
Android RenderScript for flexible parallelism on multi-core CPUs
and GPUs. Our RenderScript implementation processes a single
frame in 15.2 ms, whereas our alternative implementation in An-
droid NDK (Native Development Kit) takes 56.5 ms. Note that it
could be possible to utilize parallelism by using OpenCL [12] in
our NDK implementation, but an OpenCL is unavailable to some
phone models, e.g., Google Nexus family, unless rooted.

Our decoder divides a 1280× 960 frame into 25600 subframes
of 8×6 pixels each. In parallel, each subframe is downsampled by
4 to 1. Taking a raw frame at 640× 480 narrowed FoV in some
phone models. By contrast, downsampling had a negligible im-
pact on the accuracy. For each subframe, the decoder finds a single
quantized hue level dominating this subframe. At each subframe
location, a packet is detected upon the transitions of the dominant
hue levels that conforms to our symbol definitions in Figure 5, as
well as passes CRC. The decoded ID is associated with the sub-
frame location to compute its AoA.

4.4 AoA Measurement
Figure 9 shows the geometry of two devices, the main camera of

an observer device Di and the display of a target device D j. Our
goal for AoA measurement is that Di measures the horizontal angle
θi j between C (center of Di’s image plane) and wi j (horizontal pixel
coordinate of D j as seen on Di’s image plane). We can derive θi j
as a function of wi j and Fi (focal length of Di in pixels):

θi j = arctan2
(
wi j,Fi

)
, (1)

(a) (b) (c)
Figure 10: (a) Rolling shutter effect during a (R to G) transition.
(b)-(c) Visual observation experiment setup.
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Figure 11: Packet error rate (PER).

where Fi =
Wi
2

(
tan FoVi

2

)−1
, Wi is the pixel width of the image

plane, FoVi is the horizontal FoV in radian available runtime through
Android APIs, arctan2(y,x) is a two-variable extension of arctan y

x
defined over (−π,π] range [2].

This is an ideal case when Di is at a perfect landscape orienta-
tion and standing upright, i.e., αx = 0,αy = 0,αz = 0. In reality, a
device held in a user’s hand would have nonzero orientation angles,
resulting in wrong wi j and θi j. To reorient wi j and evaluate the true
θi j, we first define an X-Y -Z intrinsic rotation, where the element
rotation angles αx,αy,and αz are obtained by the built-in Android
API, the magnetometer, and the gravity sensor. Figure 10c defines
the axes of rotation. Each observing device applies Z- and Y - rota-
tion matrices Rz and Ry to the pre-rotation (hi j,wi j,zi j), where zi j
is the point where a virtual sphere of the radius Fi intersects with a
line originating from (hi j,wi j) orthogonal to Di’s image plane. The
post-rotation coordinates are given by:[

h′i j w′i j z′i j
]T

= Rx(αx)Ry(αy)Rz(αz)
[
hi j wi j zi j

]
,

where Rx, Ry, Rz denote the 3-D rotation matrices with respect to x-,
y- and z-axis, respectively. Then, we compute the re-oriented θ ′i j by
(1) and w′i j. The CaaS Mobile Application sends θ ′i j to the server-
side Observation Collector. Note that to make θ ′i j compatible with
a server-side reference orientation, each device also reports its own
αx along with the observation so that the server normalizes θ ′i j with
respect to the mean of all devices’ αx.

Vision-based AoA sensing also gives a rough estimate of the
physical distance to the observed device. In Figure 9, the distance

di j is given by di j = s j/2tan
6 βi j

2 , where s j is the screen’s physical
length and 6 βi j is its horizontal angular width seen by Di. We can
obtain s j from D j’s specification. In reality, D j may be slanted or
partially occluded, resulting in a smaller 6 βi j to Di’s view. Thus,
di j is not a definite distance but only an upper-bound that the real
distance could be at most. We include di j as an upper-bound dis-
tance constraint for our optimization in Section 5.1.

4.5 Mobile-side Observation Performance
We evaluate the mobile-side observation performance using two

Nexus 5s, one for an observer and the other for a target. The display
size is 4.95 inches and the camera’s FoV is 59.6°×46.7°.

PER in handheld observations. Figure 11 shows the PER (packet
error rate) when two devices are hand-held by participants. The ob-
served device transmits 9-symbol packets 100 times for each light-
ing and distance condition. The PER remains low within a certain

126



Lighting,
orientation

Night
Ideal

Day
Ideal

Day
Random

Day
Hand-held

(Avg, σ ) (0.64, 0.44) (0.53, 0.31) (1.29, 0.69) (1.23, 1.03)

Table 1: Observation angle error (degree).

distance, i.e., under 10% until 9 meters at night, under 5% until
6 meters under daylight. As discussed in Section 4.2, the average
packet duration is less than 1 second for a 9-symbol packet; even
for extended identifier digits supporting 10000+ people, 1.5 sec-
onds will suffice. Thus repeated observations for a few seconds
will boost the chances of successful decoding at further distances.
Without considering the rolling shutter effect, the PER increases to
33% for observation even at 1 meter away at night.

Accuracy of AoA measurement. We evaluate the accuracy of
the observation angle θi j in controlled settings. We conduct a set
of measurements under varying conditions of ground truth angles,
distances, ambient lighting, and observer orientations. We measure
the error of θi j, i.e., the absolute difference between an estimated
angle and a ground truth angle varying within the camera’s FoV.

First, we evaluate the angle errors under the ideal orientation,
i.e., two devices heading in the same direction and mounted on
landscape tripods (Figure 10b). The ground truth observation an-
gle is set by a protractor at ±25°, ±20°, ±10°, and 0° at distances
from 1 to 10 meters at every 1 meter increment. This means that we
measured the accuracy at 70 different locations under each lighting
condition. The average AoA error on 70 different locations is re-
ported in Table 1. We test two lighting conditions: daylight (55000
lux) and night (0 lux). Results indicate that errors in observation
angles are typically small, i.e., less than 0.7° on average regardless
of ground truth angles and lighting conditions, as shown in Table 1.

Next, we evaluate the accuracy at realistic phone orientations un-
der the daylight conditions: (1) an observer device randomly ori-
ented but firmly held on a tripod (Figure 10c), and (2) both devices
hand-held by human participants. For (1), we measured the rotation
angles after an arbitrary rotation that happened to be: αx = −20°,
αy = 7.4°, and αz = 7.4°. For (2), two persons raised their phones
overhead and stood at the corresponding observation angle and dis-
tance. For each of the two conditions, we measured AoA errors at
70 different locations as mentioned above and obtained the aver-
age. Table 1 shows slightly increased errors compared to the ideal
cases. These errors may be due to possible compass offset [75].
Section 5.2 addresses server-side compensation for this error.

5. RECONSTRUCTING CROWD LOCATIONS
The CaaS server first collects the mobile-side observations – tu-

ples of (Di,D j,θi j). Each tuple indicates that an observer Di has
visually identified a target D j at an angle of θi j. Based on the obser-
vations, it then reconstructs the locations of all devices by solving
a constrained optimization problem. We present how we formulate
the optimization problem and discuss our approaches to improving
reconstruction accuracy and scalability for large crowds.

5.1 Formulating an Optimization Problem
We build an optimization problem subject to a set of geometric

constraints. The goal is to compute device locations that produce
inter-device angles closest to the real observed angles.

Constraints. We begin with a geometric illustration of an obser-
vation (Di,D j,θi j), as shown in Figure 12. Device Di’s camera
observed another device D j’s ID at a relative angle of θi j. The
coordinates of the two devices (xi,yi) and (x j,y j) as well as the
distance between them are all unknown. In theory, this observation
enforces one constraint, which is that D j should exist at an arbitrary
point only on the line originating from (xi,yi) towards the direction

Di (xi , yi)

Dj (xj , yj)

Feasible

region

+!"

"ij

-!"

εi

"ij

+!"
-!"

Figure 12: Cartesian plane for constrained optimization.

of Di’s camera at a slope of θi j. In reality, however, we consider
a possible imprecise observation of θi j and physical limitations.
Thus we define a so-called feasible region where D j would exist,
which is the trapezoidal area enclosed by four lines (L1, L2, L3,
and L4) highlighted in Figure 12. The rationale for these lines is as
follows: (1) L1 and L2 are employed to incorporate possible error
bounds of θi j; we set the slopes of L1 and L2 to be apart from θi j by
−∆θ and +∆θ , respectively. (2) We incorporate the upper-bound
distance that comes with each observation by which D j could be
apart from Di at most as discussed in Section 4.4. Also, Di and D j
should be apart by at least a single person’s torso width. These two
distance constraints define L3 and L4 as orthogonal lines to DiD j
and distant from Di by d f ar and dnear, respectively.

Putting them together, we derive the constraints associated with
the observation (Di,D j,θi j): four linear inequalities (2) through (5)
defining the region enclosed by L1 – L4:

L1 : y j ≥ tan(θi j−∆θ)(x− xi)+ yi , (2)
L2 : y j ≤ tan(θi j +∆θ)(x− xi)+ yi , (3)

L3 : x j ≤
1

tan
(
θi j +

π

2
) {y j− (yi +d f y)

}
+(xi +d f x) , (4)

L4 : x j ≥
1

tan
(
θi j +

π

2
) {y j− (yi +dny)

}
+(xi +dnx) , (5)

where d f x = d f ar cosθi j , d f y = d f ar sinθi j,

dnx = dnear cosθi j, dny = dnear sinθi j .

Constraints (4) and (5) place x j on the left-hand side to deal with
a zero slope instead of an infinite slope when θi j = 0. Having the
constraints in linear forms is favorable to lowering the computa-
tional complexity. Back to the original problem with N devices, we
build the whole constraints set by concatenating all the inequalities
for each (Di,D j) pair where an observation exists in between.

Cost function. We define a cost function as the gross unsigned
difference between the reproduced angles and the observed angles.
Consider N devices and the observations among some of them. Let
O denote a set of device pairs (i, j) where an observation from Di
to D j exists. The goal is to find (x1,y1, ...,xN ,yN), minimizing the
error between θi j and the computed slope of DiD j after reconstruc-
tion. The cost function f and its gradient are given by:

f (x1,y1, ...,xN ,yN)

= ∑
(i, j)∈O

{
arctan2(y j− yi, x j− xi)−θi j

}2
, (6)

∇ f =
N

∑
i=1

(
∂ f
∂xi

x̂i +
∂ f
∂yi

ŷi

)
. (7)

Note that f must be differentiable to warrant a gradient. Thus
we use a square term for the unsigned angular difference in (6).
arctan2(y,x) is differentiable by x and y except where

√
x2 + y2 +

x = 0. This singularity is not in our domain because Di and D j
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(a) Baseline reconstruction re-
sults. Mean LE: 0.26 mpd

0 1 2 3 4 5 6

0

1

2

3

4

5

6

(b) Camera displacements over-
looked. Mean LE: 0.14 mpd

Figure 13: Reconstructed locations of 49 phones placed on 7×7
grids. 1 mpd=75 cm. Blue hollow circles (◦) denote ground truth
locations. Red solid circles (•) denote the computed locations.

do not overlap, observations are unidirectional, and we define the
Cartesian plane to always place Di to the left side of D j.

Although we focus on only the “relative” locations, we need one
fixed reference point on the Cartesian plane to keep our problem
domain bounded. Without loss of generality, we anchor a single
arbitrary device at the origin: x1 = 0,y1 = 0.

Now the reconstruction problem is translated into a nonlinear
programming problem to find (x1,y1, ...,xN ,yN), minimizing f in
(6) subject to linear inequality constraints (2) – (5) and two linear
equality constraints of x1 = 0,y1 = 0. Several algorithms are avail-
able to solve this family of problems [22, 69]. CaaS uses fmincon,
an off-the-shelf implementation of these algorithms in MATLAB.

5.2 Tackling Error Factors
To represent location accuracy in our collective visualization con-

text, we define a unit Mean Person Distance (mpd) — the mean dis-
tance between adjacent people on their ground truth locations. We
report the individual location error (LE) and the average location
error (Mean LE) in units of mpd. Although the physical distance of
1 mpd may vary in different crowds, we refer to an average inter-
person distance of 0.75 meters from [36]. We set 1 mpd to be
0.75 m in controlled experiments unless specified otherwise.

Through experiments with real phones, we found that the tech-
nique proposed in Section 5.1 results in noticeable localization er-
rors. Figure 13a shows an example reconstruction for 49 phones
placed on 7× 7 grids. The location errors are shown in units of
mpd. Every phone is localized within LE < 1 mpd.

5.2.1 Incorporating Compass Offset
In spite of the mobile-side reorientation of local coordinates, we

still observed some errors in the device’s horizontal heading αx due
to the gyroscope drift and magnetometer interferences [75]. We
found that the local measurements of αy and αz are more reliable
which the gravity sensor mostly determines.

To compensate possible errors in the devices’ αx readings, we
define a variable εi that is an observer-specific error between its
true horizontal heading and the measured one. For an observer Di,
we presume εi is a constant for a short period of time, representing a
static offset in its αx readings. Formally, we revise our cost function
f to make it possible to manipulate εi within a moderate interval:

f (x1,y1, ...,xN ,yN ,ε1, ...,εN)

= ∑
(i, j)∈O

{
arctan2

{
y j− yi, x j− xi

}
− (θi j + εi)

}2 (8)

where −∆ε ≤ εi ≤+∆ε, for 1≤ i≤ N (9)

The gradient in Equation (7) incorporates εi terms, and our lin-
ear inequality constraints incorporate the constraint (9). We found
∆ε = 20° works for most cases. Figure 13b shows an improved
reconstruction by applying εi terms.

5.2.2 Incorporating Off-centered Camera
Figure 13b exhibits small but consistent angular shifts by 3–10°

in the reconstructed locations. The shifts are slightly counterclock-
wise from the ground truth. The reason is that the camera lenses
are not centered on the phones’ body, but displaced by 4.3 cm to
6.5 cm. In landscape view, this creates an effect as if the observer
device were slightly aside from the true location.

We resolved this issue by replacing the observer’s Y-axis coordi-
nates yi with yi +δi in (2) – (5) and (8); δi is a per-device constant
indicating the displacement of the camera from the phone’s center.
We approximate δi as the half of the phone’s screen height given
by Android API. Figure 20a shows improved reconstruction (Mean
LE: 0.07 mpd) after including camera displacements. Note that the
target’s coordinates (x j,y j) remain the same in the equations be-
cause the observer mostly sees the center of the target’s display.

5.3 Keeping Computing Time Scalable
Our mobile-side experiments have dealt with a relatively small

number of people (or devices) (N < 50) due to the practical chal-
lenges associated with recruiting a larger number. Still, we can
test the Crowd Reconstructor with synthetic workloads of a larger
N. We built a mobile-side simulator that (1) generates ground-truth
locations for given N simulated people and (2) synthesizes real-
istic observations among the devices. The ground-truth locations
are generated to roughly form a given spatial formation, and have
the inter-person distances follow a given statistic distribution, i.e., a
normal distribution of µ = 0.75 and σ = 0.2. The observation syn-
theses incorporate the real camera’s FoV, distance bounds, and im-
perfect orientations that we learned previously. Using the synthetic
observations, we measured the reconstruction time on a server run-
ning on moderate hardware – Intel i7 2.8 GHz CPU, 16 GB RAM.

Figure 14a shows that our implementation of Crowd Reconstruc-
tor takes significant computing time as N increases, becoming im-
practical at N = 200. This means that, even after mobile-side obser-
vations are completed, the people must still wait for many minutes
until the reconstruction completes and card stunts are fully ready.

5.3.1 Accelerating with Initial Location Estimates
So far we have bootstrapped the nonlinear optimization algo-

rithm with random initial locations. We observed that initial val-
ues more similar to the ground truth locations make the algorithm
converge faster. To obtain approximate initial values at much less
complexity, we build a linearly constrained quadratic programming
problem. Figure 14c illustrates our quadratic cost function, which
is the vertical distance between (x j,y j) and the line from (xi,yi) at
a slope tanθi j. Our quadratic-formed cost function is given by:

fa(x1,y1, ...) = ∑
(i, j)∈O

[{
(x j− xi) tanθi j +(yi +δi)

}
− y j

]2
We used quadprog, an off-the-shelf quadratic programming imple-
mentation in MATLAB, to find (xi,yi)s which minimize fa, subject
to the same constraints as in Section 5.1. Figure 14b shows the
computing times of this quadratic programming for N ≤10000 as
well as Mean LE of the estimated initial locations. These initial
locations exhibit much larger Mean LEs by an order of magnitude
compared to those achieved by nonlinear optimization (plotted to-
gether in Figure 14a). Still, we observe that providing these initial
locations to the nonlinear optimization saves an average of 43.5%
computing time compared to random bootstrapping.
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(a) Nonlinear optimization for N < 1000 (b) Quadratic optimization for N ≤ 10000
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(c) Quadratic cost function geometry.

Figure 14: (a), (b): Computing time and Mean LE for varying N. (c): Quadratic cost function.
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Figure 15: Visualizations for N=48, 500, 5000 at similar localiza-
tion errors (0.18<Mean LE<0.21). Red dots and gray dots denote
ground truth locations whose pixels are on and off, respectively.
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Figure 16: Visualization only with initial locations.

5.3.2 Diminishing Relative Impacts in Larger Crowds
So far the reduced computing time is still too long to be practical

for N in an order of hundreds or more. We need a different level of
breakthrough. Our insight is that, for a larger N, a relaxed recon-
struction accuracy may not impact much on the visualization qual-
ity. Figure 15 shows the varying visualization quality for different
N even at a similar Mean LE. These visualizations are created by
CaaS using simulator-generated observations and determining on
or off for each device. The resulting pixels are visualized on their
ground truth locations. The main factor of varying quality is the
pixels-per-symbol. For N = 48 only 1 pixel stroke width is allowed
per symbol, compared to many pixels in the stroke for N = 5000.

In this light, we address that even the initial location estimates
would achieve practical accuracies for large Ns. To demonstrate
this strategy, we generated the ground truth locations and observa-
tions of 8000 people in formation at an aspect ratio of 1:5. Their
locations are estimated only by quadratic programming. Then each
device is set on or off based on its estimated location. Figure 16
shows the resulting visualization that would appear on top of their
ground truth locations. A future question would be: how large N is
good enough for this strategy? It may depend on the visualization
complexity and the ratio of 1 mpd to the whole crowd area.

5.3.3 Partitioning into Subproblems for Parallelism
Section 5.3.2 showed huge time saving by orders of magnitude,

e.g., 1000-device reconstruction in less than 5 seconds. Still, the
ever-growing computing time is no longer practical for N in the
next order of magnitude. For N = 10000 it exceeds 2 minutes. It
is time to seek parallelism. We exploit our problem’s locality from
the nature that the mobile-side observations are spatially bounded.

Figure 17 shows such locality for N = 10000. The sparsity pat-
tern is a symmetric matrix where (i, j)-th and ( j, i)-th elements are
set if Di and D j has an observation in between. While the original
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Figure 17: Sparsity pattern of observations for 10000 devices (left)
and its RCM reordered matrix (right)

No. of partitions 1 4 8 16 32

N
=

10
00

0 Mean LE 0.27 0.26 0.31 0.44 0.46
Max subprob. time (s) 153 31.7 7.31 1.13 0.45
% of
devices
that

1≤ LE < 2 0.10 0.13 1.98 1.69 2.50
2≤ LE < 3 0 0 0.03 0.03 0

LE ≥ 3 0 0 0 0.16 0.10
No. of partitions 1 16 32 64 128

N
=

40
00

0 Mean LE 0.26 0.29 0.32 0.50 10.62
Max subprob. time (s) 1061 21.2 7.52 2.40 0.72
% of
devices
that

1≤ LE < 2 0.16 0.23 0.43 8.86 20.6
2≤ LE < 3 0 0 0.02 0.03 4.04

LE ≥ 3 0 0 0 0.03 20.3

Table 2: Trade-offs along with the number of partitions

matrix (left) looks chaotic, applying RCM reordering [26] on the
device indices reveals a matrix of strong diagonal locality (right).

We use this reordered diagonal to partition the devices into sub-
groups, keeping most dependencies therein. This way, only a few
observations at the partition borders are discarded. Figure 18a
shows how we partition a problem of N = 10000 into 4 subprob-
lems of N = 2500 each and where the observation losses occur.
Figure 18b–18e shows the reconstruction of each subproblem com-
puted independently. While computing the original problem as is
took 153 seconds, a subproblem took 31.7 seconds at most. This
subproblem computing time further decreases for a greater degree
of parallelism, e.g. 7.31 seconds for 8-way. The RCM reordering
and putting together the subproblem results take a trivial runtime,
e.g., less than 300 ms for 8-way, N = 10000.

Finer parallelism creates more partition borders and discards more
observations. Table 2 shows a trade-off among the number of par-
titions, Mean LE, and subproblem computing times. Still most de-
vices are localized at LE < 1 mpd even in small-sized partitions
computable in a few seconds, except for 128-way, N = 40000.

6. DEPLOYMENT AND EVALUATION

6.1 Reconstruction under Controlled Settings
We evaluate the reconstruction performance under controlled set-

tings using 49 phones of the models: Nexus (5, 6, 5X, 6P) and
Galaxy S6, with display sizes of 4.95 to 5.96 inches and horizontal
FoVs of 59.6° to 68.1°. To study under different practical condi-
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(a) (b) (c) (d) (e)
Figure 18: Reconstructing 10000 simulation-generated device locations by 4-way partitioning. (a): Partitions denoted on RCM-reordered
sparsity matrix. (b)–(d): Reconstruction results for each partitioned subproblem. Red solid circles (•) denote reconstructed device locations
within LE<1 mpd. Green triangles (N) denote reconstructed device locations where 1 mpd ≤ LE < 2 mpd.

Figure 19: Reconstruction test in varying (orientation, placement,
lighting) conditions. Top to bottom: (ideal, uniform, night), (real-
istic, uniform, day), (realistic, variable, day)

tions, we conduct experimental trials under different conditions of
(i) ambient lighting (day (69000 lux) vs. night), (ii) orientation
(ideal vs. realistic), and (iii) device placement (uniformly spaced
vs. variably spaced). For the realistic orientations, we applied ran-
dom rotations around the X or Z axis and height variation, i.e.,
placing randomly selected devices on boxes 8 – 20 cm high. For
device placements, we placed each device on 7×7 grid points with
75-cm spacing in between. For the condition of variable-spaced
placements, each device was placed on a randomly selected grid
point among 9× 9 grid points each spaced by 75 cm. All devices
were fixed on the same type of holders. Figure 19 shows the setup.
For brevity we use an ordered triple notation (orientation, place-
ment, lighting) to denote an experiment condition. For example
(ideal, uniform, night) indicates the conditions of ideal orientation,
uniformly spaced placements, and dark lighting at night.

For evaluation, we measure Mean LE in units of mpd as defined
in Section 5.2. Figure 20a and 20b show the reconstruction of the
49 phone locations in varying conditions. The reconstruction is
close to the ground truth locations; no single device’s LE exceeds
0.3 mpd (23 cm). Table 3a shows Mean LEs ≤ 0.13 mpd (10 cm)
in every condition. The errors are small enough that the the pixel
assignments do not deviate from the optimal ones. The lowest er-
ror was observed at night because of the large number of observed
devices. The average number of observed devices at night is 4.9,
while 4.0 and 4.3 devices were observed in (realistic, uniform, day)
and (realistic, variable, day), respectively. Counter-intuitively, in
(ideal, uniform, day) conditions we observed the fewest, 2.6, be-
cause a device would likely occlude those immediately behind it.

6.2 Small Deployment on 49 Participants
We conducted small-scale deployments using CaaS to recon-

struct a crowd of 49 participants and demonstrate CaaS-guided col-
lective visualization. We deployed twice — once under daylight
(73200 lux) and another time at night. We recruited the partici-
pants from a campus bulletin board. To rule out learning effects,

Condition Mean LE σ

(I, U, N) 0.068 0.049
(I, U, D) 0.125 0.087
(R, U, D) 0.107 0.067
(R, V, D) 0.105 0.081

(a) Controlled test with 49 phones.

Condition Mean LE σ

(R, U, N) 0.186 0.113
(R, U, D) 0.178 0.123
(R, V, N) 0.196 0.133
(R, V, D) 0.168 0.114
(b) Deployment with 49 people

Table 3: Reconstruction errors: Mean LE and σ in mpd. Condi-
tion notations: (Orientation {Ideal | Realistic}, Spacing {Uniform
| Variable}, Lighting {Day | Night})

each deployment was conducted with different groups of 49 partic-
ipants (age: 18 – 35). Everyone voluntarily participated and was
compensated with a gift card worth either USD 10 or 15. Those in
the daylight group were given the higher valued cards because their
visualizations were expected to take more time to flip the cardboard
upon the cues given from their CaaS Mobile Application (see Fig-
ure 2b). The night deployment took less time because the visualiza-
tion was automatically done by the glowing phones (see Figure 2a).
Our deployment plan was reviewed by the IRB and classified as ex-
empt, meeting the minimal risk research criteria.

The daylight group included 38 males and 11 females (height:
155 – 181 cm). The night group included 32 males and 17 fe-
males (height: 155 – 187 cm). For those using iPhones or Android
phones below 5.0, we provided our own. The phone models in-
cluded: Nexus (5, 6, 5X, 6P) and Galaxy (S6, Note5) with display
sizes of 4.95 to 5.96 inches and horizontal FoVs of 59.6° to 68.1°.

We demonstrate scenarios in which those 49 participants collec-
tively visualize one letter at a time with their phones (at night) or
cardboard (under daylight). Each person was responsible for one
of the 49 pixels. We asked the participants to stand on 7× 7 grids
with 75 cm spacing (see Figure 21a). We also conducted variably
spaced cases; each participant stood on a random grid point of their
choice out of 81 points of a 9× 9 grid (see Figure 21b). Impor-
tantly, the ground truth locations of the phones are not aligned on
the grids in either case. Each phone is handheld, so that there is a
random displacement from the center of the human body. We man-
ually labeled the ground truth locations as seen in the snapshots.

In our deployment, visual observation sessions of each device
took from 4.6 up to 30 seconds until 4 to 6 distinct devices were ob-
served. This time included 1) visualizing hue transition sequences
and observing AoAs, 2) network delay of sending a cue for "Raise
your phone" from the CaaS server to each participant, and 3) hu-
man factors from a few sluggish users raising their phones late. We
set the observation timeout as 30 seconds to address occasional hu-
man factor delays. We believe that the timeout would not be too
long for highly motivated people with a specific purpose.

Table 3b lists Mean LEs≤ 0.2 mpd (15 cm) in every condition.
No single device’s LE exceeded 0.5 mpd (33 cm). Mean LEs
slightly grew compared to the controlled cases because (1) the over-
head handheld phones underwent minor motions and (2) the ground

130



0 1 2 3 4 5 6

0

1

2

3

4

5

6

(a) (Ideal, Uniform, Night)
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

(b) (Realistic, Variable, Day)
0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(c) (Realistic, Uniform, Night)
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

(d) (Realistic, Variable, Day)
Figure 20: Reconstruction performance. (a)–(b): controlled setting, (c)–(d): real deployments with human participants. Blue hollow circles
(◦) denote ground truth locations. Red solid circles (•) denote computed locations. Every phone is localized within LE<1 mpd.

(a) Uniform spacing (night) (b) Variable spacing (day)

Figure 21: Two cases of small-scale deployment setting.

truth locations seen from the snapshot picture may have differed
from the true locations when each device captured the AoAs. Fig-
ures 20c and 20d show the reconstruction of the 49 people’s devices
and the labeled ground truth locations. Figure 2 show their CaaS-
guided card stunts showing “MOBISYS” one letter after another.

7. DISCUSSION
Participants’ cooperation: Our use case expects the participants
to hold their phones overhead during the initial localization. While
this might sound burdensome, we target highly motivated partici-
pants as discussed in Section 2. They would feel it insignificant
compared to their other efforts. Our experiments showed that the
initial localization during which a CaaS user needs to hold the
phone overhead takes as low as 4.6 seconds. As for following the
coordinator’s cues, such motivated participants would be as coop-
erative as they have been in conventional public gatherings.

Dynamicity of crowd. CaaS is mainly designed for stationary,
cooperative, densely packed crowds [9, 13, 15, 18, 20]. As dis-
cussed in Section 2, CaaS participants are highly motivated and
cooperative to convey their common voices, so they may be will-
ing to remain stationary while using CaaS. Still, some might in-
evitably move, join or leave while CaaS is in action. An efficient
way to handle a newly joined or relocated user is to initiate a lo-
calized reconstruction for a subgroup of devices in the vicinity of
the new user. Users that have left the visualization could be de-
tected through events triggered when the CaaS Mobile Application
is closed on the devices. To enable a newly joined device to detect
nearby devices, the CaaS Mobile Applications could sporadically
toggle Bluetooth discoverability [46, 57]. Only a tiny fraction of
the devices should be discoverable at a time to avoid channel flood-
ing. Detecting a few nearby device identifiers would suffice for the
CaaS server to define a spatial subgroup to be reconstructed.

Potential cellular bottleneck. CaaS needs Internet access for each
device to send AoA measurements to the CaaS server. Concur-

rent cellular traffic from tens of thousands of densely packed users
would render the nearby base stations irresponsive [39]. Despite
the tiny payload (< 1kB) to/from a CaaS Mobile Application, they
may produce a short, concurrent burst of messages at the initial
localization. We believe that this issue is transient due to the up-
coming 5th Generation (5G) Mobile Networks. We discuss the fea-
sibility of Internet access via 5G networks and other alternatives.

• A major goal of 5G networks is to support simultaneous connec-
tivity for a large number of devices. The 5G White Paper from
the Next Generation Mobile Networks (NGMN) Alliance [11]
specifies the capability of providing simultaneous Internet con-
nectivity to 150000 devices per square km. It also specifies a
stadium example with an equivalent density — 30000 simulta-
neously connected devices in a stadium with 25.6 Mbps average
rate per device. Moreover, high-density connectivity load will
be further distributed as such an area will most likely be covered
by multiple cell towers, each likely owned by different mobile
carriers. Even one carrier may operate multiple cell towers in an
overlapped manner. We envision that, in the near future with 5G
networks operational, packed participants of CaaS in a stadium
or in a public square will be able to connect to the CaaS server.

• Adopting ad-hoc network techniques would be an alternative
to reduce simultaneous connections to a cell tower. Shafiq et
al. proposed a connection-sharing technique to reduce network
overload [62]. Notably, they showed its efficiency in a scenario
very similar to CaaS (e.g., a stadium). Adopting the connec-
tion sharing into CaaS will greatly reduce the simultaneous con-
nections to a nearby cell tower. While a device (namely DA) is
connected to the CaaS server via a cellular network, dozens of
nearby devices around DA send their AoA measurement data to
DA via Bluetooth or WiFi Direct. DA then sends the collected
data as well as its own measurement to the CaaS server via a cel-
lular connection. This way, only a small portion of the devices
connect to cellular networks, but all devices still communicate
with the server. The individual CaaS messages are very small
(<1kB), which are favorable to keep the aggregated message size
not burdensome for DA to send via the cellular connection.

• While CaaS aims at public spaces where rich WiFi infrastructure
is unlikely, stadium-specific scenarios may benefit from WiFi in-
frastructure available at some advanced stadiums. There were
700 WiFi access points in operation at New Orleans Superdome
during the Super Bowl in 2013 [27]. IBM Smarter Stadiums [8]
and Cisco Connected Stadiums [6] offer dense WiFi connectiv-
ity for tens of thousands of fans in a stadium, which will soon be
deployed in Atlanta Stadium [3] and Texas A&M Stadium [19].

Time synchronization. To visualize animated symbols, CaaS re-
quires a method to synchronize the local clocks of the participants’
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devices. The desired time-sync resolution depends on the dynam-
icity of card stunt contents. For example, a 30-fps animated image
would require a fine-grained time-sync resolution smaller than 33
milliseconds. On the other hand, intermittently changing images
such as those in conventional manual card stunts may tolerate even
a few seconds of time-sync resolution. Our deployment shown in
Figure 2 is the latter case, i.e., showing one character at a time for
several seconds and than changing to the next one. In the deploy-
ment, we did not observe a noticeable out-of-sync problem even
without any time-sync method. Nonetheless, CaaS needs time-sync
functionality to support faster animations. Below we discuss a few
time-sync options available to off-the-shelf smartphones:

• GPS achieves a typical error in the order of sub-microseconds [48].
This is favorable for CaaS since most scenarios are expected to
be outdoor events. An Android device can compute its local
clock relative to a global reference clock from the satellites [1].

• Network Time Protocol (NTP) is an alternative for sub-second
time-sync resolution, achieving a typical error in the order of tens
of milliseconds (WiFi) or hundreds of milliseconds (4G) [47].

• Cellular networks provide a built-in time-sync feature, Network
Identity and Time Zone (NITZ) [10], but it is not an option for
CaaS because its typical error is in the order of minutes.

Facing similar directions: The initial localization works best when
the participants face similar directions. The visible light observa-
tion is not omnidirectional but constrained within moderate angular
ranges; e.g., Nexus 5’s camera has an FoV of 59°, and the display
exhibits dimmer brightness at peripheral viewing angles. Having
the phones see similar directions creates a much higher probability
that one phone’s camera and another one’s display are in the line of
sight. This would not be an issue because CaaS will likely target
crowds whose participants are naturally facing similar directions,
e.g., the stage, the coordinator, or the arena [9, 18, 20]. For further
assistance, the CaaS Mobile Application provides sensor-assisted
audio-tactile feedback to hold the phone at a certain 3-D orien-
tation, i.e., the display faces forward and the main camera faces
backward. Our experiments showed that each phone sees not only
the one immediately behind it but many phones within its FoV and
a certain range, achieving simultaneous multi-target observations.

Different heights of participants: Even after the phones are aligned,
one may argue that not many screens may be seen in a device’s FoV
due to the different heights of people. We find this hardly a prob-
lem. Given a smartphone camera’s typical vertical FoV of 46°, an
observer device is able to see other devices behind it as long as the
height difference is within±32 cm for a horizontal distance of 0.75
meters; the tolerable height difference grows for people more than
0.75 meter away. For the height distribution of U.S. adults, a 32-
cm interval centered at the median covers 98% of the same-gender
adults, and 92% of whole adults [16]. In our deployment, we found
no problem from height differences. Stepped floors in a stadium
may amplify the height differences, but the audio-tactile feedback
may consider the floor slope to tilt properly. The coordinator UI
may include a simple pointing feature to estimate the floor slope.

Participant feedback: The CaaS Mobile Application shows the
symbol to be visualized, so that a participant can opt out anytime.
It may be unusual though, as we assume motivated crowds that
agreed to the symbols in online communities prior to the event.

8. RELATED WORK
Stitching small displays. Technologies for stitching multiple dis-
plays have been proposed in the HCI and mobile computing lit-

erature. However, such techniques are poorly suited to the sce-
narios addressed by CaaS. Phone as a pixel [61] and Where’s my
pixel [42] use a global camera with an omniscient view to see all
participants’ phone screens within its FoV. In CaaS scenarios, such
a camera would need to be high enough to have a holistic view
of the crowd. Requiring such a mid-air camera would greatly in-
crease the barrier to entry, in direct opposition to our objective to
offer a commodity service that does not require the installation of
additional hardware into public spaces. MagMobile [33] uses spe-
cialized hardware attached to all devices to detect the spatial ar-
rangement between two collocated devices in very close proxim-
ity up to a few centimeters. Again, CaaS should support unmod-
ified off-the-shelf smartphones. Other approaches require struc-
tured light [56], fiducial markers [60], short-range infrared [51],
programmable tiles [59] and so on. MovieTile [55] stitches dis-
plays by having users repeat pinching gestures for every adjacent
device to determine their relative directions. Such a pair-wise ges-
ture would not be user-friendly, fast, nor precise.

Relative localization of distributed devices. We discussed closely
related works for peer-to-peer ranging in Section 2.2. In addi-
tion to these previously described works, APIT [31] is an influen-
tial early work in wireless sensors using radio connectivity among
sensor nodes. A large volume of works are based on the radio
connectivity principle [74], dual-mode radio [21], or acoustic sig-
nals [30]. However, within large-scale densely packed devices, ex-
isting connectivity-based approaches would suffer from excessive
noise, multipath interferences, and signal attenuation. Event-driven
approaches inject events to the system and utilize the detection pat-
terns to infer the individual locations [63, 64, 73], but they require
dedicated event generators/detectors such as a moving aerial vehi-
cle emitting focused light beams. While CaaS scenarios address
mostly stationary people, moving object tracking or interpersonal
ranging techniques [25, 38, 65, 35, 37, 34] may complement CaaS
to promptly address individuals joining and leaving.

Facilitating public activism. In the last decade, online social me-
dia and mobile connectivity have influenced public activism [24,
28, 66, 67]. Still it remains unclear if social media really facilitates
public activism and supports users in the changing of wider societal
perceptions [50]. CaaS may complement such online influences to
facilitate public activism by attracting real-world attention.

9. CONCLUSION
This paper presented Card-stunt as a Service (CaaS), a service

enabling a densely packed crowd to instantly visualize symbols col-
lectively using their mobile devices and server-side services. CaaS
features novel robust mobile visual observation and scalable op-
timization techniques to achieve high-density, infrastructure-free,
and fast crowd reconstruction in real environments. Our implemen-
tation is robust and effective, demonstrating decimeter-level accu-
racies in real 49-person deployments, regardless of devices orienta-
tion and placement, and of lighting conditions. Our scalable com-
puting strategy exhibits steadily low computing time even for simu-
lated groups of tens of thousands of devices. Beyond the scenarios
mainly discussed, CaaS would open up creative opportunities for
people to express their ideas in a massive and prominent way.
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