

Figure 1. Power impact at pre-installation time

PowerForecaster: Predicting Smartphone Power Impact of
Continuous Sensing Applications at Pre-installation Time

Chulhong Min1, Youngki Lee2, Chungkuk Yoo1, Seungwoo Kang3, Sangwon Choi4,
Pillsoon Park5, Inseok Hwang6, Younghyun Ju7, Seungpyo Choi1, Junehwa Song1
1School of Computing, KAIST, 2School of Information Systems, Singapore Management University,

3Computer Science and Engineering, KOREATECH, 4Information and Electronics Research Institute, KAIST,
5Division of Web Science Technology, KAIST, 6IBM Research – Austin, 7Naver Labs

1,5{chulhong, ckyoo, spchoi, pillsoon.park, junesong}@nclab.kaist.ac.kr, 2youngkilee@smu.edu.sg,
3swkang@koreatech.ac.kr, 4sangwonc@kaist.ac.kr, 6ihwang@us.ibm.com, 7younghyun.ju@navercorp.com

ABSTRACT
Today’s smartphone application (hereinafter ‘app’) markets miss a
key piece of information, power consumption of apps. This causes
a severe problem for continuous sensing apps as they consume
significant power without users’ awareness. Users have no choice
but to repeatedly install one app after another and experience their
power use. To break such an exhaustive cycle, we propose
PowerForecaster, a system that provides users with power use of
sensing apps at pre-installation time. Such advanced power
estimation is extremely challenging since the power cost of a
sensing app largely varies with users’ physical activities and
phone use patterns. We observe that the time for active sensing
and processing of an app can vary up to three times with 27
people’s sensor traces collected over three weeks.
PowerForecaster adopts a novel power emulator that emulates the
power use of a sensing app while reproducing users’ physical
activities and phone use patterns, achieving accurate, personalized
power estimation. Our experiments with three commercial apps
and two research prototypes show that PowerForecaster achieves
93.4% accuracy under 20 use cases. Also, we optimize the system
to accelerate emulation speed and reduce overheads, and show the
effectiveness of such optimization techniques.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems

Keywords
Power impact; Sensing applications; Pre-installation; Smartphone

1. INTRODUCTION
Today’s smartphone app markets help users select desirable apps,
providing diverse information such as features, screenshots, and
user comments; however, they are missing a key piece of
information: power consumption by an app. Users can only find
out whether an app is power hungry after they install and use it.
They count on such experiential perception to decide whether they
keep the app or how long they use it. However, continuous

sensing apps [25][28] make such experiential power control no
longer effective. They continuously drain battery in the
background without a user’s explicit awareness. For example, a
pedometer app, Accupedo [1], consumes up to 200 mW of
additional power, causing an early shutdown of a user’s phone.

What if an app market provided the estimated power use of a
sensing app? Given such information, users could make better
informed decisions, even prior to installing the apps. Users are
relieved of exhaustive trial and error, can decide judiciously to
install a certain app, and may be less embarrassed with rapid
battery depletion if they decide to accept the expected battery cost.

It is not straightforward to realize such a function in reality. A
trivial way is for an app developer to post the average power of an
app for common use cases. However, we noticed that such a
reported power number would not be accurate for many individual
users. The deviation mainly results from that the power use of a
sensing app varies noticeably depending on users’ physical
activities, phone use, and other environmental factors. The error
becomes even larger when the app applies various optimization
techniques such as triggering power-hungry GPS with low-power
accelerometers (See Section 2.2).

In this paper, we propose PowerForecaster, a system to provide
an instant, personalized power estimation of a sensing app at pre-
installation time. Figure 1 shows the two mockup screenshots that
users would see in an app market when the system is integrated.
PowerForecaster aims at enabling a number of unique user
experiences. First, it provides power estimation at pre-install time,
removing the hassle of installing and using apps one after another
until users find power-efficient apps. Second, estimation is highly
personalized to reflect an individual user’s activity and phone use
patterns, achieving higher estimation accuracies. Third, the system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SenSys '15, November 1-4, 2015, Seoul, South Korea
© 2015 ACM. ISBN 978-1-4503-3631-4/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2809695.2809728

31

supports a wide variety of sensing apps without requiring any
changes in the apps or additional information from developers.

To realize the unique features above, we take a trace-driven
emulation approach. The key idea is (1) to pre-collect sensor and
device usage traces on a user’s real phone, which represent a
user’s physical activities and phone use patterns, respectively, and
(2) to build a power emulator that assesses expected power use of
a sensing app based on the pre-collected traces. The emulator
executes the target sensing app over the sensor traces and tracks
changes in the power states of key hardware components. At the
end, it maps each power state into a power number and calculates
total power consumption by aggregating all the power numbers
caused by hardware use. In addition, it tracks the hardware use of
other apps by replaying the device usage traces for accurate net
power estimation. Note that a sensing app runs continuously and
shares hardware with other apps. In this way, the system estimates
power impact of the target app, accurately reflecting user behavior.

We address a number of technical challenges to make our
approach feasible. Most importantly, we designed our own
Android power emulator with significant extension to the original
Android emulator to support various sensors, trace replay, and
power tracking. The Android emulator [2] does not track power
states of hardware components or emulate common sensor devices
such as accelerometers. Moreover, it does not feed pre-collected
sensor traces to the emulator, thereby precluding the possibility of
emulation over users’ real traces. Other existing emulators also
[17][54] do not support power emulation of sensing apps.

We further optimize PowerForecaster to make its emulation fast
and its collection of traces power efficient. First, it is needed to
use longer user behavior traces for reliable power estimation, but
this makes emulation very time consuming. The emulation by
default takes as much time as the length of original traces.
Advance emulation is challenging due to enormous combinations
of users, sensing apps, and their version updates. PowerForecaster
achieves fast emulation by (a) fast-forwarding replays in a way to
capture changes in power states only and (b) parallelizing replays
on multiple emulator instances. Our evaluation shows that it
emulates 18-hour long traces within half of a minute, with a small
error (6-7%). Second, it incurs nontrivial power overhead to
collect sensor traces on a user’s phone. From our empirical
experiences, we developed a balanced duty-cycling policy to
minimize necessary data collection while keeping power
estimation accuracy high. Users do not need to repetitively collect
sensor traces for various sensing apps. Instead, they collect traces
for a day or two reflecting their behavior once and reuse them.

The contributions of this paper are summarized as follows. First,
we show that continuous sensing apps’ power use varies
significantly depending on user behaviors, which motivates the
need for personalized power estimation. Second, we premiere an
accurate power estimation system for sensing apps, providing
user-specific power estimation at pre-installation time. Third, we
present our system optimization for fast estimation and energy-
efficient trace collection. Finally, we demonstrate the accuracy
and overheads of the system through extensive experiments.

2. MOTIVATION
2.1 Motivating Scenario
Krystal, a businesswoman in her 20s, intends to walk more when
she commutes and meets her clients. She searches for a pedometer

app to organize her walking and is happy to find a long list of
apps on Google Play. She carefully selects and installs one with
the claim by the developer: “Consumes less than 5% of battery
per day. Tested on a dozen popular phone models.” However, she
gets embarrassed finding her phone unexpectedly powered off in
the afternoon. She gets upset, repeating installing and uninstalling
one app after another. Positive comments on the battery efficiency
were not consistent with her experiences. Even after a week, she
could not find a satisfactory app. PowerForecaster addresses such
discrepancies in advance. Figure 1 depicts what she would see for
pedometer apps. For each, it shows the estimated decrement of
her own phone’s daily battery life if she installed and used the
app. She can find the least battery consuming app suitable for her
own daily life patterns without relying on doubtful claims and
comments from developers and other users.

2.2 Unveiling the Cause: User Behaviors
What causes such discrepancies between Krystal’s experience and
the developer’s estimates or other users’ experiences? It is mainly
from diversity in individual user behavior, especially their
physical activities and phone use. Users’ different activities
trigger different branches of logic in the same sensing app. For
example, many apps adopt conditional sensing pipelines for
power optimization, using low and high power sensors selectively
[23][30][32]. Actual power use largely depends on how often and
long the user’s activities trigger the conditions. Different phone
use patterns also affect net power increase of a sensing app as it
shares hardware resources with other apps while running in the
background [24]. For example, the app obtains already-triggered
wakelocks at almost zero cost, a major power consumer otherwise.

We quantify the impact of user behavior on battery use with data
traces from 27 people over two example sensing apps.

Data traces. We collected sensor and phone usage traces from 27
participants for three weeks (14 undergraduates, 7 company
employees in their 20s-50s, 5 graduates in their 20s-30s, and 1
housewife in her 50s). We deployed a data-logging app on their
phones. Data collection was set to 12 hours a day (from 10AM to
10PM), but actual collection time varied due to battery depletions.
We analyzed data collected more than 8 hours a day.

Applications. We consider two sensing apps inspired by previous
works: (1) MyPath, a location tracker [41] and (2) ChatMon, a
conversation monitor [32]. MyPath records the GPS trace of a
user every 10 sec. It triggers GPS only when the user is moving
which is detected from cheaper accelerometer sensing. ChatMon
monitors speakers and conversation turns by sound sensing and
processing. Sound sensing is triggered only when the user is close
to someone else, which is checked by Bluetooth scans every 2 min.

Effect of physical activities. We first computed the ratio of GPS
activation time of MyPath to total execution time. Figure 2(a)
shows the cumulative distribution of GPS activation time ratio.

0%

20%

40%

60%

80%

100%

0.05 0.1 0.15 0.2

CD
F

(a) GPS activation ratio

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6

CD
F

(b) Sound sensing activation ratio
Figure 2. CDF of activation time ratio

32

Mobile-side User Behavior-aware
Power Emulator

User Trace Manager

App
Repository

Device Usage
Trace CollectorU

se
r B

eh
av

io
r

Tr
ac

e
Co

lle
ct

or Sensor
Trace Collector

Target sensing app

sensor/device usage trace

hardware usage
statistics

Net power
increase

Power Impact
Estimator

Cloud-side

Figure 3. PowerForecaster architecture

The average ratio per user ranges from 5.7% to 20.2% (mean:
12%, SD: 3.2%). Assuming that MyPath runs 12 hours a day, the
top user activates GPS 1.5 hours more than the bottom. We
similarly show the ratio of sound sensing activation time of
ChatMon, which monitors conversations with the top 5 frequently
encountered people. Figure 2(b) shows the cumulative
distribution of sound sensing activation time. The average ratio
varied from 4.8% to 67.1% (mean: 34.9%, SD: 18.2%). The top
user would activate 3.5 more hours of sound sensing than the
average user, assuming that ChatMon runs 12 hours a day, which
would cause a huge difference in users’ power use.

Effect of phone uses. We further examined the effect of resource
sharing by analyzing the net increase in CPU activation time
caused by wakelocks ChatMon obtained. Here, we briefly discuss
two different cases that show such sharing effect. First, two users,
P6 and P13, showed similar activation time for sound sensing, but
different net increase in CPU activation time. For both users,
sound sensing was activated for 29% of the total duration.
However, P6’s CPU was solely activated by ChatMon for 15% of
the total duration, while 22% was activated in case of P13. This
difference comes from that P6 used his phone for other purposes
for longer duration compared to P13, so P6’s CPU was activated
more already by other apps. Second, for the other case, P8, P15,
and P16 showed similar sound sensing activation time, around
40%. However, they exhibited fairly different net increase in CPU
activation time: 30%, 40%, and 33%, respectively. This indicates
that phone use of individual users would affect net power
consumption of a sensing app due to the sharing effect.

3. POWERFORECASTER DESIGN
3.1 Design Goals
Installation-free: PowerForecaster relieves tedious installation
trials caused by sensing apps’ unknown battery use. To this end,
PowerForecaster needs to provide users with estimated battery
consumption before they install and use the apps.

Accuracy: Power estimation should be accurate and reflect what
users will experience when they actually use the apps. It needs to
be tailored to reflect users’ different behaviors.
Latency: Estimation needs to be performed in a short time to
support on-the-fly requests from users.
Coverage: PowerForecaster aims at providing power estimation
without modifying app binaries; any requirement to change the
apps would significantly diminish its utility.
Overhead: PowerForecaster should minimize the overhead on
users’ mobile phones, especially to pre-collect various sensor
traces and device usage traces required for power emulation.

3.2 Power Emulation Approach
We devise a user behavior-aware power emulation approach. The
key idea is to reproduce the real execution environment of a target
app and track its power use while replaying it over pre-collected
traces of sensor and device usages. It has three advantages: (1) It
accounts for major user-dependent variables, physical activities,
and phone use patterns, which significantly affect the target app’s
power consumption. (2) It estimates power use of an app with no
knowledge on its internal logic or prior power profiling required.
The emulator tracks hardware use of the app by executing its
executable with no need of its source code. (3) It considers shared
hardware use with existing apps by reproducing their resource use.

There have been other approaches to estimate mobile apps’ power
use, but it is not trivial to apply them to the accurate estimation of
sensing apps. Development-time estimation, direct measurement
with a power meter or model-based schemes [42][56][57], hardly
reflects individual user behavior, which largely affects sensing
apps’ power use. Another potential approach is collaborative
power estimation. It shares power impact of sensing apps obtained
from users who already used the app. The power numbers from
the users with similar behaviors are provided to a potential user; a
similar concept is proposed in [40] for energy diagnosis. However,
this requires a large user base to find similar users due to plenty
combinations of behavioral factors affecting power use of sensing
apps. We believe PowerForecaster can complement this approach,
as it works based on personal traces without a large user pool.

3.3 System Overview
PowerForecaster takes the executable of a target sensing app as an
input and provides a personalized estimation of the target app’s
net power increase (mW) as an output. Later, the power numbers
can be processed in various ways for user-friendly presentation
(See Section 8 for examples). Figure 3 shows the architecture of
PowerForecaster. It consists of two major components, a mobile-
side trace collector and a cloud-side power emulator. Prior to
power estimation requests, the mobile-side collector pre-collects
user behavior traces (possibly for one weekday and one weekend
reflecting user behavior). The traces are uploaded to and managed
in the cloud server. Upon a request, the power emulator estimates
power impact of a target app with the pre-collected traces.

Mobile-side: The mobile-side component collects user behavior
traces in the background. The sensor trace collector collects a
series of sensor data that captures users’ physical activities. The
device usage trace collector logs hardware component usages by
existing apps, which are potentially sharable with a new sensing
app. Not to interfere with usual phone use, the traces are uploaded
to the cloud server only when the phone is on Wi-Fi and charging.
The collected traces are used for various sensing apps in the future.

Cloud-side: Upon a power estimation request, the user behavior-
aware power emulator executes the target app’s executable and
monitors its hardware usage. At the same time, it replays the
sensor and device usage traces to reproduce the execution
environments affecting the power impact of the app. As a result,
the emulator obtains detailed hardware usage statistics including
which, when, and how long hardware components are used. The
power impact estimator computes the net power increase due to
the app based on the cumulative statistics during the emulation.

3.4 System Scope and Limitations
It is extremely challenging to achieve all of our design goals for
generic workloads and users. We clarify the scope and limitations
of this study and our current system prototype.

33

Table 2. Representative resource request APIs

Resource type Request APIs Parameters

CPU acquire() / release() on WakeLock timeout, ref. count
setRepeating() / cancel()
on AlarmManager

alarm type, trigger
time, trigger interval

GPS requestLocationUpdates() /
removeLocationUpdates()
on LocationManager

provider, minDelay,
minDistance, criteria

Bluetooth startDiscovery() / stopDiscovery()
on BluetoothAdapter

Other sensors
(Accel., Gyro, ...)

registerListener() / unregisterListener()
on SensorManager

sensor type,
sampling rate

Table 1. Sensor data, system call, and events
Sensor Type Sensor Data Related System Call Related System Event

GPS longitude,
latitude, altitude,
speed, bearing

gps_start(),
gps_stop(),
…

GPS_EVENT_STARTED,
GPS_EVENT_STOPPED,

Bluetooth name, address,
bond state, type,
UUIDs, RSSI

startDiscoveryNative(),
stopDiscoveryNative(),
…

ACTION_FOUND,
ACTION_DISCOVERY
_STARTED/_FINISHED

Wi-Fi BSSID, SSID,
capabilities,
frequency, level

scan(),
wifi_ctrl_recv()

SCAN_RESULTS
_AVAILABLE_ACTION

Other sensors
(accel. gyro, ...)

values enableSensor(),
disableSensor()

Target apps: Our system focuses on continuous sensing apps that
continuously run in the background, such as Google Fit [14],
Accupedo [1], and NoomWalk [39]. Specifically, we focus on
their autonomous sensing services that perform repetitive sensing
tasks controlled by built-in sensing logics and programmatically
detectable external events. We do not target conventional apps
and sensing apps’ UI activities, which are explicitly run and quit
by users. The rationale behind this choice is that, for conventional
apps, users retain controllability on how much they use the apps
and thereby also on the apps’ power use to some extent. For
sensing apps, continuous sensing is a major drain on power. UI
activities consume relatively less power as they are likely run for a
short time compared to the whole operation time of sensing apps.

Tracked hardware components: For power estimation, our
prototype considers hardware components commonly used by
sensing apps: inertial sensors, GPS, Bluetooth and Wi-Fi scans,
microphone, and CPU. (See Section 5.3 for details.) We have not
yet considered other components such as display, network, or
GPU, as those are used less commonly in sensing apps and
contribute little to the overall power impact. Section 7 shows that
our prototype estimates power use of various sensing apps with
average error of 6.6%, considering aforementioned components.
We understand that there are a few examples [53] using other
components. Our emulation can further expand to consider such
components by leveraging various power models proposed in
[36][42]. For example, network power cost can be considered by
tracking relevant factors such as packet transmission time and
signal strength and by reproducing them in the emulator [36].

Selection of user traces: For accurate power estimation, it is
important to collect user behavior traces that well reflect a user’s
common daily behavior. Of course, there could be daily variations
of user behaviors, but literature has showed that user behaviors
have patterns [8][13][34]. Our ultimate goal is to accurately
predict the future power impact of a target app by considering
routines and patterns of user behaviors. In this study, we focus on
developing a power emulation system that precisely estimates net
power increase of an app given proper behavioral traces. We leave
capturing a user’s routine as a future work.

Scalability to heterogeneous phones: It is well known that it is
needed to build power models specific to individual phone models
for accurate tracking of apps’ power use. This raises a scalability
issue, as a variety of phone models exist in today’s market. Our
system will face the same problem for its wider deployment as the
core technique is based on pre-built power models. Note that our
prototype incorporates power models for Nexus S and Nexus 5.

To be optimistic, a few phone models take considerable market
share currently. Three popular iPhone models and top-10 Android

ones take 70%1 and 33%2 of iPhone and Android market share,
respectively. Power modeling for those popular models will be
feasible (even if manual measurements need to be involved). This
possibly makes wide deployment of PowerForecaster feasible in
practice, dealing with heterogeneous phones. For less-common
models, we can consider other approaches. For example, most
hardware chipset manufactures open up power profiles per
different hardware states, and the profiles can be incorporated into
PowerForecaster. In case such information is not available or the
power consumption is not stable across the same phone models
[6][57], we can leverage prior works to automatically self-
construct power models for unknown phones [6][55]; these works
achieve an accuracy of 90%-95%. Once power models are
available, they can be easily incorporated into our system as we
modularize it in a way to include new power models.

4. USER BEHAVIOR DATA COLLECTION
In this section, we explain what data are collected by the trace
collector in detail. Section 5 describes how the collected data are
used for power emulation.

Sensor trace: The sensor trace collector collects sensor data that
reflect physical user behaviors. More specifically, it records three
types of information. First, it records sensor data streams with
timestamps from frequently used target sensors. Second, it records
sensor-related system events notified from Android, e.g.,
gps_event_started. Such events are needed to ensure correct
replays of sensing apps since many of them use these events as
triggers to internal logic. Last, it hooks and logs the system calls
and callbacks between the Android framework/kernel and the app.
These are required to reproduce power states in sensor devices, as
in users’ real situations. For example, the time to activate GPS
sensing largely depends on whether a user is outdoors or not.
Recording GPS values alone is not sufficient to emulate such cold
start, which subsequently affects the accuracy of power emulation.
Table 1 shows sensor data, events, and system calls that we collect.

Device usage trace: Another important factor for accurate power
emulation is to consider shared use of resources, as shown in
Section 2.2. A naïve method is to emulate other apps
concurrently with a target sensing app and accurately trace shared
use of various hardware components. However, it requires heavy
computation to emulate multiple apps concurrently. It is also
challenging to log and replay realistic user inputs for foreground
interactive apps. Thus, we take an approach to record only the
device usages of existing apps and estimate sharing effects on the

1 http://info.localytics.com/blog/more-iphone-6%E2%80%99s-being-sold-but-iphone-

6-shows-stronger-user-engagement
2 http://info.localytics.com/blog/android-device-samsung-maintains-dominance

34

Emulator
instance

Sensing app

...

Emulator pool

Sensor
Manager

BT/WiFi
Manager

Location
Manager

Sensing app

Alarm
Manager

Power
Manager

Time
Accelerator

sensor data

Kernel

An
dr

oi
d

Fr
am

ew
or

k

Emulator
Manager

Device Usage
Replayer

Sensor Emulator trace

wake-up
msg.

HW
Usage

Monitor

trace

Power Impact
Estimator

HW usage statistics

...
Sensor / device

usage trace
Accel.Accel. BT Wi-Fi GPS

Figure 4. Architecture of user behavior-aware power emulator

emulation process. This enables to accurately account shared use
of hardware with other apps without directly executing them.

The device usage trace collector records the requests from the
existing apps to various hardware components, e.g., wakelocks for
CPU, with timestamps. By replaying such requests while
emulating the sensing app, it is possible to identify the shared
accesses to various hardware components between the target
sensing app and other apps. This can be reflected upon accounting
the power impact of the target sensing app, resulting in more
accurate estimation. Android exposes a narrow set of APIs that
allows apps to request access to hardware such as sensors and
CPUs. The collector logs a series of the API calls and parameters.
Table 2 shows what our prototype collects in more detail.

5. USER BEHAVIOR-AWARE POWER
EMULATION
Simply using existing mobile emulators [2][17][54], or their naïve
extensions is not a feasible solution to emulate power use of
sensing apps. Since their main goal is for testing and debugging of
mobile apps, they do not support power monitoring during
emulation. Also, they cannot reproduce a user’s behavioral
environments, which are essential for accurate power estimation.
While there are simple sensor simulation tools, their functionality
is highly limited for our purpose, as we will discuss in 5.1.

To address the issues, we develop a novel user behavior-aware
power emulator by significantly extending the existing Android
emulator. Figure 4 shows its architecture. Overall operation flow
consists of the following three stages.

Pre-emulation stage: Upon a request, the emulator manager
prepares the necessary inputs for emulation. It first obtains sensor
and device usage traces from the trace manager as well as the
executable of the target sensing app. It then initiates a set of
power emulator instances in parallel to reduce the estimation
latency (Section 6.1). Each instance installs the target app and
receives a part of user traces from the emulator manager. Before
executing the app, it replays pre-generated user interaction such as
clicking a start button to bootstrap the app if necessary. It also
adjusts its system clock to synchronize the time with the traces.

Power-emulation stage: After the preparation, the power
emulator instance executes the target sensing app. While the app
is running, the sensor emulator mimics the operation of sensors to
fulfill the app’s requests on sensor use by using the pre-collected
sensor traces (Section 5.1). To consider the sharing effect, the
device usage replayer reproduces the existing app’s device use
based on the device usage trace (Section 5.2). This allows the

target app to execute as if it were running along with other apps.
During the execution, the hardware usage monitor tracks system
calls made to use hardware components such as sensors and CPU.
At the end, it generates hardware usage statistics, a series of
executed system calls along with corresponding timestamps.

Post-emulation stage: With the collected hardware usage
statistics, the power impact estimator computes the net increase in
power consumption by the target app (Section 5.3). For power
estimation, we adopt a system call-based method using power
profiles obtained by offline profiling [42]. We consider the
following hardware components mainly used by sensing apps:
CPU, GPS, inertial sensors, microphone, Bluetooth/Wi-Fi scans.

5.1 Sensor Emulation
The sensor emulator reproduces a user’s physical behavior
conditions by feeding the user’s real sensor traces to the target app.
For realistic emulation, it should feed sensor data at accurate
timing and rate as the app demands. It should also emulate the
hardware states of the corresponding sensor devices and account
for power estimation afterwards.

Existing sensor data replay tools [12][51] do not meet our
requirements. SensorSimulator [51] provides a custom library that
relays pre-collected sensor data from a host PC to a mobile
emulator. However, it requires app-side modification to use the
library. ReRan [12] records and replays input events such as touch
events and sensor data during the execution of an app for testing
and debugging. While it does not require any modification of the
app logic, the target app has to be executed during sensor data
collection, which violates our pre-installation requirement. Also,
both of them do not emulate the power state of sensor devices.

We develop a sensor emulator that mimics real sensor devices’
operation and states. First, it provides apps with pre-collected
sensor data while fulfilling their specific requests. Second, it
replays sensor-related system events for correct app operations.
Third, it tracks the changes in expected power states based on the
sensor-related system call and callback logs to and from the kernel.
The sensor emulator is located between the Android framework
and the kernel, which is a middle layer that receives sensor data
requests from multiple apps and interacts with the kernel. It hooks
the sensor-related system calls from the framework to the kernel
and provides sensor data using the collected trace.

Accelerometer, gyroscope, etc: The sensor emulator hooks all
sensor activation and deactivation requests from the Android
SensorManager to the kernel. To handle an activation request, it
searches for sensor data corresponding to the request time from
the collected trace and pushes them into the sensing app. Also, the

35

GPS On

Base
0mW

State1
422mW

State 3
253mW

State 2
422mW

GPS On

GPS On

GPS
off

Inactivity for 4s

Inactivity
for 5s

BT scan

Base
0mW

State1
368mW

State 3
302mW

State 2
113mW

Cancel
Inactivity

for 4s

Inactivity for 5s

Inactivity
for 2s

(a) (b)
Figure 5. Power model of (a) GPS, (b) Bluetooth on Nexus S

sensor emulator performs a sampling of data in the sensor trace if
necessary to meet the rate requirement of the sensing app.

GPS: The sensor emulator hooks GPS requests from the Android
LocationManager to the kernel. Upon a request, it searches for
GPS data corresponding to the request time and sends the data
after the activation time recorded in the GPS traces. It is important
to consider the activation time in a user’s real situation, since it
varies depending on the user environment (e.g., indoors and
outdoors) even with the same request. It affects both the sensing
app’s execution and the power consumption of the GPS device.
At times, there could be no GPS data exactly matching the request
time since the GPS request interval of the app can be different
from that used for the trace collection. The sensor emulator
interpolates GPS data from two adjacent logs and uses them.

Bluetooth and Wi-Fi scan: The sensor emulator intercepts scan
requests from the Android BluetoothAdaptor and WifiManager.
Upon the request, it retrieves scan logs with a timestamp closest to
the request time from the collected trace and forwards them to the
apps. To ensure the apps’ proper operation, it broadcasts relevant
events, e.g., bluetooth-discovery-finished, scan-results-available-
action, which are recorded in the trace along with scan results.

5.2 Device Usage Replay
The device usage replayer reproduces a user’s phone use behavior
to reflect the power-sharing effect in the emulation. The replayer
runs in the background as an Android service simultaneously with
the target sensing app. It uses the pre-collected device usage trace
containing a list of time-stamped elements, (timestamp, API
function, parameter values) as shown in Table 2. Based on the
timestamp, the replayer calls the API with the parameter values.

Since API calls to access hardware components usually operate as
a pair, e.g., acquire()/release(), both API calls should be
contained in the trace for the accurate power estimation. However,
one API call of the pair could be omitted at times because of duty-
cycled data collection (Section 6.2) or the segmentation of device
usage traces for parallel execution (Section 6.1). Before replaying
the trace, the trace manager fills in the missing calls. For example,
if there is only one release() in the given trace, it adds acquire()
and set its timestamp to the beginning of the trace.

5.3 Estimation of Power Impact
During the emulation, the hardware usage monitor collects the
hardware usage statistics, i.e., a collection of system calls made by
the framework, and their timestamps. Sensor-related system calls
are captured in the sensor emulator (See Table 1). To account for
power use of the CPU, the hardware usage monitor intercepts
wakelock requests, acquire_wake_lock() and release_wake_lock(),
from the Android PowerManager to the kernel. Upon a request to
acquire a wakelock, it also obtains CPU utilization of the target
sensing app from /proc/stat until a release request. We properly
scale the CPU utilization to compensate for the different CPU
performances between the server and the smartphone as in [36].

After the emulation, the power impact estimator computes the net
power increase by the target app, netPapp based on the hardware
usage statistics. We compute netPapp as follows:

= ,
where D is the set of hardware components app uses and PDwith_app
and PDwithout_app are the power consumption of D with and without
app, respectively. As noted earlier, our component set currently

supports CPU, GPS, Bluetooth/Wi-Fi scans, microphone,
accelerometer, gyroscope, and magnetometer.

The power consumed by the aforementioned components is
estimated with a system call-based power estimation [42]. We
built a finite state machine (FSM)-based power model for each
component based on associated system calls as in Figure 5. Then,
we constructed an FSM for the entire device considering the
sharing effect of system calls. The FSM-based power model
facilitates to consider tail power state of hardware components
and the sharing effect across system calls [42]. To make the power
models, we profile the power states of the components for each
system call using a power meter [38]. PDwith_app is computed based
on FSM models and hardware usage statistics made during the
emulation. PDwithout_app is done similarly based on the hardware
usage statistics after replaying the device usage trace only.

6. SYSTEM OPTIMIZATION
6.1 Acceleration of Emulation
A key challenge of emulation-based power estimation is a long
execution time. Unlike typical apps, sensing apps operate closely
tied to real-time clocks. They are governed by sampling rates,
sensing intervals, and time window for data processing. Naïve
emulation would take the same duration of sensor traces to replay.
Powerful hardware may not necessarily reduce the emulation time
for our workloads, e.g., reading accelerometer at 100Hz for 5 sec.

To address the challenge, we develop 3 acceleration mechanisms:
parallel execution, idle time skipping, and progressive estimation.
Figure 6 shows them for a commercial pedometer app, Accupedo
[1]. We leverage unique characteristics of continuous sensing
apps. First, they usually operate by repeating cycles. While the
operations could be stateful within a cycle, they might be stateless
in between. This implies the potential of parallel emulation.
Second, sensing apps wakes up the device as little as possible to
save energy; active periods are much shorter than idle periods.
Accupedo wakes up every 10 sec to detect the user’s movement
with 20-ms accelerometer data and sleeps again if no movement.
We can safely skip such long idle time to accelerate the emulation.

Parallel execution: Given an original long trace, the emulator
manager splits it into shorter segments, e.g., 2-min-long each, and
assigns a segment to each emulator instance. Each executes a
target app independently, replaying sensor and device usage traces
in an assigned segment. Upon completion, the hardware usage
statistics from each instance are aggregated for total power
estimation. A practical issue in parallel execution is to determine a
proper length of a segment. It should be short enough to exploit
parallelism, but long enough to include the stateful behavior in a
cycle. Ideally, proper segment size depends on the apps’ internal
logic. Consider ChatMon detecting an encounter via BT scan
every 2 min. The ideal segment size may be 2 min. Automatically
identifying such sizes for each app is not trivial unless we know

36

collect and process accel. data (0.02 sec)
idle period (9.98 sec)

(1) parallel
execution

time
Accupedo

movement detected
...

Accel. sensor ...

Before acceleration

...

(2) idle time
skipping

...

(3) progressive
estimation

...

...

Net power
estimation

40mW 45mW 43mW
Figure 6. Acceleration mechanisms for sensing app emulation (with the Accupedo pedometer example)

0

50

100

150

200

0

5

10

15

20

0 10 20 30 40 50 60 70 80

Po
w

er
 c

os
t (

m
W

)

Er
ro

r r
at

e
(%

)

Duty cycle period (minutes)

Error rate
Power cost

Figure 7. Effect of duty-cycling; bars represent standard deviation

the internal logic of the app in advance. In this paper, we use the
same segment size for every app. We found that 2-min-long
segments showed reasonable accuracy for all our example apps.
An automatic solution might be possible, e.g., by analyzing
repeated resource use patterns of a sensing app [33].

Idle time skipping: The time accelerator shortens emulation by
skipping idle times of the device during the emulation. We regard
idle time as a period for which all CPU wakelock requests are
released. The time accelerator identifies the start and end of the
idle time from the Android PowerManager, which manages all
wakelocks. Upon detecting all wakelocks have been released (the
start time), the time accelerator scans the alarm schedule in the
Android AlarmManager until the very next alarm (the end time).
It skips the idle time by setting the system clock to the end time.

Progressive estimation: Despite the significant reduction of
emulation time by the techniques above, the final emulation time
is bounded by the segment with the longest execution time. The
execution time of a segment varies as idle time skipping is
opportunistic upon user behavior. For more responsive service,
we develop a progressive estimation. During the emulation, it
estimates net power increase with interim results of emulation and
progressively updates it. This technique does not reduce the
execution time but reduces the first response time to the end user.

6.2 Energy-efficient Trace Collection
The trace collector collects sensor and device usage traces for
power estimation of future sensing apps. The trace collection runs
only for 1-2 days to reflect user behavior. Still, one might be
concerned about the collector’s power use, as it is desirable to
collect raw sensor data at the highest rate for future generic use.

We applied a widely used duty-cycling technique to reduce power
cost of the trace collector. The question is how far can we increase
the cycle with minimal decrease of accuracy?. Figure 7 shows the
estimation errors with respect to those without duty cycling and
respective power overheads for various duty-cycles. We used two
18-hour-long traces of MyPath obtained from the real deployment
experiments in Section 8 and set the active data collection
duration to 2 min for a period; during the active collection, the
sensor data is recorded based on the configuration of a full sensor
set (Table 4). Based on the results, we use a 24-min duty-cycle
period, i.e., the ratio of 1/12, where the power cost starts to
saturate and the error is still below 10% even with the deviation.
Such duty cycling is possible since a user’s mobility, location and
encounter tend to have temporal locality [8][13][34].

7. EVALUATION
We implemented PowerForecaster; on mobile-side, we developed
the sensor trace collector as an Android service. We modified the

Android system to track device usage and existing apps’ hardware
usage. On server-side, we developed the power emulator based on
the Android emulator. We also made the user trace manager and
power impact estimator in Java. PowerForecaster was evaluated
for its accuracy, speed, and overhead for power emulation.

7.1 Evaluation Setup
We evaluated PowerForecaster under realistic settings with
various apps and users with different behavioral characteristics.

Phones and servers: We used Nexus S (Android 4.1.2) and
Nexus 5 (Android 4.4.4) phones for the experiments; we used
Nexus S phones by default. For emulation, we arranged 12
desktop servers (with i7-2600k CPU and 16 GB RAM), where
each server was configured to run one or more emulator instances
in parallel. For a single power estimation request, the average
CPU use was 5-10% per each emulator instance. We discuss the
server-side resource use in more details in Section 7.3. We did not
apply optimization techniques by default.

Sensing apps: We mainly used three sensing apps including a
commercial pedometer app, Accupedo [1], and the two research
apps we developed, MyPath and ChatMon described in Section 2.
Section 7.2.2 describes the applicability of our system to two
more commercial apps, NoomWalk [39] and Pedometer2.0 [45].
The hardware components that the three commercial pedometer
apps use in common are accelerometers and CPU. Note that,
while diverse sensing apps have been proposed in a research
domain, only a few types are commercialized, e.g., pedometers.
To cover more diverse hardware usage, we selected MyPath and
ChatMon. The former uses accelerometers, GPS, and CPU and
the latter uses Bluetooth, a microphone, and CPU.

Comparison: For ground truth of the net power increase (mW) of
a target sensing app, we used Monsoon power monitors [38]. It is
obtained as the difference in power consumptions between when
running a target sensing app with existing apps, and when running
existing apps only. We made three alternatives that developers can
potentially use to provide power impact of sensing apps:

37

Table 3. Summary for five user behavior scenarios

ID User Activity
User behavior parameter

Moving Indoor Encounter App usage

1 Graduate student
(M, 30s)

Shopping
alone 50 min 60 min 0 min 5 min

2 Undergraduate
student (M, 20s)

Moving
and class 10 min 45 min 15 min 20 min

3 Office worker
(F, 30s)

Moving
and lunch 20 min 40 min 60 min 15 min

4 Office worker
(M, 20s) Going out 30 min 30 min 40 min 30 min

5 Housewife
(F, 50s) Going out 30 min 30 min 40 min 1 min

Time (min) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

Mobility Walking Staying Walking Staying
In/Outdoor Outdoor Indoor
Encounter Alone Encounter
Phone usage Map W

eb Web Video

Figure 8. User behavior scenario 4

Figure 9. Experimental setup

Global-single measures the power using a power monitor while
running the target app only, under a specific user behavior
scenario, and provides it as an estimation result.
Global-average measures the power uses of the target app under
multiple user behavior scenarios. It takes an average value to
provide a representative estimation. Note that this does not
consider the shared power use with other apps.
Global-single-shared measures the power while running both the
target app and apps used in a specific user behavior scenario.
Under this scenario, it provides an estimation taking into
consideration the shared power use with other apps. Note that this
baseline is equivalent to the ground truth of the chosen scenario.

User behavior scenario: For accuracy evaluation, we performed
scenario-based experiments. We craft multiple one-hour scenarios
with four parameters: mobility, encounter, indoor/outdoor status,
and phone usage. We determine the parameter values and their
combinations based on real user data described in Section 2.
Table 3 summarizes the five scenarios used for our experiments.
Figure 8 depicts detailed sequences of user activities and phone
usages for Scenario 4. Other scenarios are made similarly.

Measurement and trace collection setup: For fair comparison,
we need to ensure that the same user behaviors are applied while
evaluating all the alternative techniques including the ground
truth. We design a setup to easily conduct experiments over
various alternatives. Figure 9 shows our setting with four phones
(Phone A, B, C, and D) and three power monitors. First, Phone A
and B are used for ground truth measurements; Phone A measures
power consumption while running a target sensing app with
existing apps. Phone B measures power while running existing
apps only. The ground truth is calculated by subtracting power
measurement of Phone A from that of B. For the PowerForecaster
estimation, we configured Phone C to run existing apps and to
collect sensor and device usage traces. Phone D measures power
while running the target app only. Global-single(ScenarioID) and
Global-single-shared(ScenarioID) use the power measured for a
specific scenario while Global-average uses the average power
measured across the five scenarios. An experimenter drove the
cart with the phones and power monitors following each scenario.
We used a script to run the same apps (web browser, video player,
email client, and map) at the same timings.

7.2 Performance Analysis of PowerForecaster
7.2.1 Accuracy of Net Power Estimation
Figure 11 shows the power measurement with 3 sensing apps in 5
scenarios. Compared to the ground-truth, PowerForecaster
accurately estimates net power increases by sensing apps. Average
error rate is 6.6%: 5.3% for Accupedo, 6.8% for MyPath, and
7.7% for ChatMon, indicating that PowerForecaster closely traces
the power use of the target sensing app. Even for the same app, its
power consumptions vary across scenarios due to different user
activities and phone usages. For ChatMon, the ground truth of the
net power increase ranges from 29 mW to 227 mW.

The three alternatives show much lower accuracy. The average
error rate of Global-average is 99% across all scenarios and apps.
Global-single(Scenario4) shows an average error rate of 116%,
indicating that it misestimates the app’s power consumption by
more than double compared to the ground truth. The average error
rates for Global-single(Scenario2) and Global-single(Scenario3)
are 59% and 128%, respectively. This indicates that the approach
itself is likely to be error-prone regardless of the scenario since it

estimates the power use of a target app based on the power
measurement for a single specific scenario. Interestingly, even for
Scenario 4, Global-single(Scenario4) shows high error rates (86%
for Accupedo). This is because Global-single does not reflect the
effect of resource sharing with existing app usage. Global-single-
shared(Scenario4) which considers this sharing effect, produces
an average error rate of 60%. The average error rates for Global-
single-shared(Scenario2) and Global-single-shared(Scenario3) are
45% and 83%, respectively. Although the error is 0% for
whichever scenario was chosen for this baseline, the average error
depends on the differences in behavior modeled in other scenarios.

We analyze the characteristics for each scenario. For Accupedo,
Scenario 1 shows the largest net power increase. Its movement
duration (50 min) is the longest, consuming much power to
process accelerometer data. However, little sharing effect due to
short app usage (5 min) makes the largest impact. Scenario 2 is
the opposite. Scenarios 4 and 5 reveal the resource sharing effect.
They have the same movement behavior but different app usage
time, 30 min and 1 min respectively. As a result, scenario 5 shows
twice net power increase. MyPath shows a similar trend as it has
accelerometer-based triggering. ChatMon exhibits different trends
due to different sensing logic and user behavior affecting sensing
operation. In scenario 1, there is no BT encounter and thus no
audio processing. Accordingly, it shows the smallest net power
increase. Scenario 3 has the longest time duration of encounter,

38

0

50

100

150

200

250

300

1 2 3 4 5
0

50

100

150

200

250

300

1 2 3 4 5

0

50

100

150

200

250

300

1 2 3 4 5

N
et

 p
ow

er
 in

cr
ea

se
 (m

W
)

Ground truth Global-single-shared (scenario 4)

(b) MyPath (c) ChatMon

Scenario ID Scenario ID Scenario ID

(a) Accupedo

PowerForecaster Global-average Global-single (scenario 4)

Figure 10. Accuracy of net power estimation by PowerForecaster

0
50

100
150
200
250
300

N
et

 p
ow

er
 (m

W
)

NoomWalk Pedometer2.0 Accupedo MyPath ChatMon

(a) more apps (b) Nexus 5

Ground truth PowerForecaster Global-single(Scenario4, 1, 2)

Figure 11. Power measurements with more apps and phones

60 min., thereby performing sound processing for the entire time.
Thus, it shows the largest net power increase. Although it has a
greater encounter time of 20 min compared to Scenario 5, its net
increase is similar to that of Scenario 5 due to resource sharing.

7.2.2 Testing with More Apps and Phones
We show the applicability of PowerForecaster to two more
commercial pedometer apps, NoomWalk and Pedometer2.0, and a
more device, Nexus 5. Figure 10(a) shows the results for Scenario
4. Our system accurately estimates the net power increase; the
ground truth for NoomWalk and Pedometer2.0 is 9 mW and 103
mW while the estimations are 11 mW and 105 mW, respectively.

Next, we investigate the accuracy of PowerForecaster on Nexus 5
with Android 4.4.4. We built the power model for Nexus 5 and
developed the PowerForecaster system based on Android 4.4.4.
We conducted experiments with the three sensing apps: Accupedo,
MyPath, and ChatMon with Scenario 4, Scenario 1, and Scenario
2, respectively. Figure 10(b) shows that PowerForecaster provides
an accurate power estimation even with another phone with a
different Android version. Average error rates of PowerForecaster
and Global-single are 6% and 21%, respectively.

7.2.3 Effect of Emulation Acceleration
We evaluate the emulation acceleration in terms of time-accuracy
tradeoff. For parallelism, we use 10, 5, 2, and 1 min segment sizes.

Parallel execution with idle time skipping: Figure 12 shows that
the average error rate is still low when applying acceleration; in
the figure, w/o skip means that only parallel execution is applied
whereas w/ skip means that parallel execution and idle time
skipping are all applied. Average error rates are 10.4% and 11.2%,
respectively. While they are slightly higher than the those without
acceleration, they are still reasonable. As expected, the segment
size affects estimation accuracy. Accupedo shows less than or
about 10% error rate overall, but the other two apps exhibit
relatively large error rates for the 1-min segment. This is due to
the characteristics of sensing logic of the apps. We briefly discuss
the ChatMon case. For ChatMon, there are two conflicting factors
affecting power estimation by parallel execution: the number of
BT scans and the delay of sound sensing and processing. With 2-
min intervals, ChatMon performs 30 BT scans for 1 hour. In
parallel execution, however, the number can vary depending on
the segment size. ChatMon is executed independently on each
emulator and performs a BT scan when it starts. While the number
of scans with 10- and 2-min segment is 30, it increases to 36 and
60 for 5- and 1-min segment, respectively, increasing the
estimated power. At the same time, duration for sound processing
can decrease in some segments, decreasing in estimated power.
Sound processing is triggered only after ChatMon detects a BT

encounter. Depending on the scenario, the two factors differently
contribute to the increase or decrease of estimated power.

Figure 13 shows the CDF of elapsed time to complete emulation
of the three sensing apps for all 5 scenarios when applying 2-min
segments. For many segments, emulation is finished for less than
20 sec. While about 30% of segments show less than 10 sec of
emulation time for Accupedo, the time for 70% of segments is less
than 20 sec for MyPath. ChatMon has similar results to Accupedo.

Progressive estimation: Figure 14 shows the average error when
applying 2-min segment parallel execution with idle time skipping.
The average error quickly decreases within 10 sec for MyPath and
Accupedo. MyPath shows 9% of error in 20 sec while Accupedo
does 19%. After 30 sec, the error almost saturates. ChatMon takes
relatively longer for saturation, i.e., 60 sec. Note that scenario 3
and 4 of ChatMon show saturation, less than 5% in 12 sec.
ChatMon’s high average error before saturating is attributed to the
high error rate in Scenario 1. Its net power increase is very small
compared to others, 28.9 mW. Thus, even a small difference in
estimation such as 10 mW, results in a large error. An example of
such difference is clearly shown in the first 10 sec, where the error
rate unexpectedly increases as the estimation progresses. This is
mainly due to ChatMon’s logic which conducts a BT scan for the
first 10 sec upon startup. Progressive estimation regards the power
cost of the initial scan as representative of the whole scenario and
thus overestimates the results compared to the small ground truth.
We summarize the results for the additional cases introduced in
Section 7.2.2. When applying 2-min segment parallel execution
with idle time skipping, our system shows 21% error (2 mW
difference) for NoomWalk due to its lack of power use and 8%
error for Pedometer2.0. For Nexus 5, the error rates are 2%, 5%,
and 3% for Accupedo, MyPath, and ChatMon, respectively.

7.3 System Overhead
Mobile-side cost: We examine the mobile-side cost in terms of
energy overhead and storage size. We omitted network cost since
the trace upload is done only while the phone is on Wi-Fi and
charged. We consider two sensor sets, a basic set with GPS,
accelerometer, and Bluetooth, and a full set with all available

39

0
5

10
15
20
25
30
35

10 5 2 1
0
5

10
15
20
25
30
35

10 5 2 1

Er
ro

r r
at

e
(%

)
(c) ChatMon

0
5

10
15
20
25
30
35

10 5 2 1

(a) Accupedo (b) MyPath
w/o skip w/ skip

Segment size (min) Segment size (min) Segment size (min)
Figure 12. Effect of parallel execution and idle time skipping

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120
Duration (sec)

Accupedo
MyPath
ChatMon 0

20
40
60
80

100
120

0 30 60 90 120
Estimation time (sec)

Accupedo
MyPath
ChatMon

Er
ro

r
ra

te
 (
%

)

R
at

io

Figure 13. CDF of emulation time (left)

Figure 14. Effect of progressive estimation (right)

Table 4 Mobile-side cost; accelerometer/light/proximity/magnetic
(delay_fastest), gyroscope(delay_game), GPS/BT/3G/WiFi(1 min.)

Data Storage
(MB)

Avg. power (active
period power) (mW),

Expected battery-
life decrease (h)

Nexus S Nexus 5 Nexus S Nexus 5
device usage 0.24 < 1 (<1) < 1 (<1) - -
sensor(basic) 11.1 23 (276) 25 (298) 0.8 0.5
sensor(full) 34.6 32 (390) 26 (314) 1.1 0.6

sensors. Table 4 shows the results calculated with 1/12 duty cycle,
which we set from our empirical experience, as shown in Section
6.2; the expected battery-life decrease is computed assuming 15
hours of battery-life with the fully charged battery, 1500 mAh and
2300 mAh for Nexus S and Nexus 5, respectively. The overall
power costs for both basic and full sensor collection were not
significant. Even with a full set, the expected lifetime decrement
on Nexus S is about an hour; while the cost to collect the sensor
data within a cycle is large 390 mW, the average power is reduced
to 32 mW due to duty cycling. The cost to collect device usages is
negligible in terms of both power use and necessary storage. Note
that one hour overhead occurred only a few times since the trace
is collected once and used for various different apps.

Server-side cost: The major operations on the server-side are as
follows. (1) Prior to a request, the emulator manager stores and
manages user behavior traces. (2) Upon a request, it initiates
power emulation on distributed phone emulators with the pre-
segmented traces. (3) It collects the hardware usage statistics from
the emulators and estimates the power impact. The costs of (1)
and (3) are not significant. For (1), the network and storage cost is
not large, as the maximum data size is about 35 MB for a single
day of a user. For (3), the estimation takes less than one sec. For
(2), the overhead to run a single emulator instance on our server is
about 5% of CPU and 400 MB of memory. The major workload
comes from simply emulating a virtual phone image even without
foreground apps running; we observed that the extra workload for
replaying the trace is quite marginal. We discuss the scalability
issue for a worldwide service of PowerForecaster in Section 9.

8. REAL DEPLOYMENT EVALUATION
Experiment setup: We recruited 6 graduate students and 1
researcher(P1) on campus in Nov. 2014. We provided a Nexus S
running our trace collector and had them use it as their primary
phone. They installed their own SIM cards on the phone and the
apps they usually use. Not to affect their usual phone use and
corresponding power consumption, we provided another Nexus S
to collect sensor data at the same time. To ensure the same user
behaviors and environmental conditions for both phones, we
taped them up to be carried together. For comprehensive analysis,
we collected the full sensor data from 8 a.m. to 2 a.m. the next day.

Each participant was compensated KRW 200,000 (USD 179). The
experiments were conducted for two weeks. The first week was to
collect prerequisite information to estimate power impact,
including sensor traces, device usage traces, hardware usage
statistics, and battery levels. When the second week started, each
participant installed one of three sensing apps, Accupedo, MyPath,
or ChatMon. The second week was to measure the decrease of the
battery life when the participants used the designated app. For
ChatMon, we recruited two students from the same project group
and configured their ChatMons to detect each other.

User-friendly power impact estimation: For this study, we
further process netPapp in more user-friendly way. Specifically, we
convert netPapp to the expected decrease in the battery life (in
hours) of the user’s phone, by applying the following formula:

decrease(app) = battery-lifewithout_app – battery-lifewith_app

,
where capacity is the phone’s full battery capacity and Pwithout_app
is the average power use of the phone before running the target
sensing app. netPapp is the net power increase of the app outputted
by our emulator. For the user-friendly output, our collector logs
phones’ battery levels to estimate battery-lifewithout_app. We use a
simple method to calculate battery-lifewithout_app: the reciprocal of
the battery drain rate (%/h), computed by using the consecutive
samples of <timestamp, battery level> as in [10][40].

Results: Table 5 shows the battery-life decrease of each sensing
app for the 7 participants. The sensing apps reduced the phones’
battery life by 12.1 hours on average. Interestingly, even a
commercial app, Accupedo reduces battery life by 5.3-14.7 hours.

We investigate the estimation accuracy. We asked the participants
to select two days during the first week, each with different IDs,
on Table 6. Note that it is impossible to measure exact estimation
accuracy without complete regeneration of a day’s user behavior.
Instead, we indirectly compare the estimated battery life with
average battery life during the second week. For each selected day,
Table 6 shows PowerForecaster’s observed battery life and
estimated future life, taking the user behavior on that day into the
input. It also shows the actual second week battery life when the
user used the sensing app. PowerForecaster estimates battery-life
decreases with high accuracy even in uncontrolled real-life
settings, over 90% for 10 cases out of 14. Even for Accupedo, a
commercial app, accuracies were over 90% for all six cases.

There are few cases when the estimation was not accurate, e.g., for
P5 with the trace 5-4. P5 mentioned he did not use the phone as
usual, nor did he move much since it was a weekend day. P5’s
battery life was about 20 hours on average during the first week,
but 33 hours in trace 5-4. This observation leads us to separately
estimate power behaviors on weekends. We will extend
PowerForecaster to make progressive classification of user’s daily
life patterns.

40

0
20
40
60
80

100

0 20 40 60 80 100 120

Er
ro

r r
at

e
(%

)

Estimation time (sec)

P4's 4-1 P7's 7-3

Figure 15 End-to-end performance with P4's 4-1 and P7’s 7-3

Figure 16 Expected power behavior of MyPath for P4

Table 5. Summary of real-deployment experiment

ID Age
2nd-week

sensing app
1st-week avg.
battery life (h)

2nd-week avg.
battery life (h)

Avg. battery
life decrease (h)

P1 37

Accupedo

26.6 21.3 5.3

P2 26 49.6 34.8 14.7

P3 32 30.5 17.5 13.0

P4 32
MyPath

30.2 19.7 10.5

P5 23 19.0 15.3 3.7

P6 33
ChatMon

29.1 16.6 12.5

P7 24 39.3 14.8 24.5
Table 6. Estimation of battery life

ID TraceID
Battery
life (h)

Estimated (future)
battery life (h)

2nd-week avg.
battery life (h) / stdev

P1
1-4 24.5 21.1

21.3 / 0.9
1-6 26.2 22.7

P2
2-5 50.0 37.0

34.8 / 2.4
2-7 47.5 35.7

P3
3-4 24.6 17.7

17.5 / 2.9
3-7 22.4 17.2

P4
4-1 33.2 24.1

19.7 / 2.7
4-7 24.8 20.0

P5
5-4 33.6 24.1

15.3 / 2.6
5-5 17.7 15.3

P6
6-1 24.5 15.2

16.6 / 1.9
6-5 45.6 18.1

P7
7-2 41.3 18.0

14.8 / 1.8
7-3 42.7 19.6

We also examine the estimation accuracy when applying all the
optimization techniques. For 1/12 duty cycling, we picked out 2-
min data every 24-min from sensor and device usage traces. We
performed power emulation using the sampled traces with 2-min
segment parallel execution and idle time skipping. Figure 15
shows the progressive estimation errors over time with trace 4-1
and 7-3, compared to the case using the whole trace without any
acceleration techniques. Notably, with only 1/12 of the trace,
PowerForecaster shows only 8.5% and 3.4% of errors,
respectively. This is because the sampled data still represent the
rest due to the context continuity. For the trace 4-1, our system
reveals decreasing errors over time, 13% and 10% at 20 and 30
sec, respectively. For trace 7-3, it saturates to 3% after 5 sec.

Besides battery-life impact, PowerForecaster also provides in-
depth analysis on future power behavior of sensing apps by using
contextual information obtained from the sensor trace. Figure 16
shows the estimated power hotspots that P4 saw prior to use the
MyPath app depending on the time and the location, respectively.
While PowerForecaster basically targets end users, it can also be
used to support developers to estimate battery-life impact of their
apps in real-life situations. Based on behavior traces collected
from diverse users, our system can provide the estimated impact
of their apps over different users before the real deployment.

9. DISCUSSION
Daily variation of user behaviors: We focus on providing an
accurate power impact estimate of a sensing app given users'
behavioral traces of a specific day. However, it is arguable that the
estimation for a past specific day can well represent the real power
impact in the future. We believe that there are both possibilities
and limitations here. The deployment study result in Section 8
shows that the estimation accuracy is reasonably good, which
implies that there are likely to be similar behavioral patterns over

days. At the same time, there are also cases that exhibit large
deviation from the estimate depending on users. From the results,
it might be difficult to provide a single representative estimate of
power impact based on one-day-long traces in the face of daily
variations of behaviors. To address the problem, we can consider
collecting user traces for several days (possibly periodically) and
making an estimate in a more detailed form, e.g., a reasonable
range instead of a single value or separate estimates for weekdays
and weekends. While this can increase the mobile side cost, e.g.,
about an hour or less decrease in daily battery life for several days
or a week, it might be a useful option for users who do not mind
collecting traces for a longer period of time. Also, if it is possible,
it may be able to recognize the behavioral patterns and model the
user behaviors as studied in [8][13][34]. Such a model may allow
us to estimate power impact of sensing apps more systematically.

Scalability: To complete a power forecasting request for a given
user and a given sensing app, it takes about 30 seconds on average
with a total of 45 parallel emulator instances running on two
physical servers of the specifications aforementioned in Section
7.1. For the cost estimation, we used MyPath and an 18-hour-long
trace from user P4 (see Section 8) under the optimization settings
of 1/12 duty cycle and 2-min-long segmentation. To discuss the
scalability for worldwide deployment, we attempt to estimate the
volume of cloud infrastructure partly based on publicly available
data and partly with our reasonable assumptions where no public
data is available to the best of our knowledge. According to
Google I/O 2015 [15], there are 50 billion app installations per
year from 1 billion Android users. We do not know the number of
sensing app installations out of those; we attempt to assume that 1
billion ones are for sensing apps. This guess is an aggressively
high number based on (1) the fact that Google Fit, one of the most
popular sensing apps, has been cumulatively installed about 5
million times (0.01% of 50 billion), and (2) the prospect that
sensing apps will proliferate in the near future. Given these
numbers, we expect about 2.8 million sensing app installations
per day. The number of daily power forecasting requests may be
higher than this; users may want to compare a few similar apps
before installing one. We use 3 for a reasonable number of
comparisons; it produces a total of 4 power forecasting requests,
giving 11.2 million power forecasting requests per day worldwide.

41

Given the resources to complete a single request shown above,
this worldwide workload could be handled by 7800 physical
servers3. This would be reasonably practical, based on the existing
server volume of today’s commercial cloud such as 1 million
servers in Microsoft datacenters4.

Our estimation has a number of limitations. The true computing
powers of a commercial cloud server are unknown. It lacks the
notion of diurnal workload fluctuations, which may act adversely
to the estimated server volume. The ever-growing popularity of
sensing apps would also aggravate the scalability issue. On the
contrary, a number of advanced strategies may be able to resolve
the scalability issues. For example, (1) we can make the kernel
ticks advance faster by modifying the Android emulator’s kernel
timer; it will further shorten the time to complete the processing
of a given trace. (2) An emulator instance may be able to
accommodate multiple target apps; this would be able to save a
significant amount of computing resources as the major workload
comes from emulating a phone image, rather than from running
apps on top of it. (3) The service provider may predict an
installation of a particular sensing app based on popularity or user
profiles; making an estimation in advance by temporary surplus
cloud resources would distribute the server-side peak loads.

Power estimation of advanced techniques for sensing apps: For
power estimation of sensing apps, we currently focus on their
repetitive sensing and subsequent data processing controlled by
built-in logics. However, some apps could offload their heavy
computation logics on the server to save energy [47][48]. To
address such apps, it is required to track their network usage and
estimate the corresponding power cost. We will extend our system
to support power estimation of sensing apps’ network usage. As in
Section 3.4, a possible method would be to track network-relevant
factors on a user’s phone and reproduce them in the emulator [36].
Besides the cloud offloading, low power processors have been
used for energy-efficient sensor data processing. Our system can
be extended to handle such advanced architectures by building
power models for low power processors and tracking their usages.

Privacy: To benefit from PowerForecaster, users are required to
upload their sensor and device usage data into the cloud, which
naturally raises privacy concerns. Optimistically, such concerns
may be mitigated if a system provides sufficient utility [26]. Many
users already upload their privacy-sensitive data such as location
and photos to the cloud for better management and accessibility.
However, to be conservative, privacy is a very subjective and
sensitive issue [18]. To relieve the concern, our system will adopt
proper solutions, e.g., allowing users to control the data type and
granularity to upload as well as data collection period.

10. RELATED WORK
Continuous sensing apps and energy optimization: Recently,
lots of continuous sensing apps have been proposed in a research
domain [30][32][37][52]. In-depth exploration can be found in
[25]. While much effort has been put toward developing an
accurate recognition logic, they also adopt diverse optimization
techniques to save battery. Also, many works propose common
platforms for mobile sensing apps and system support for energy-
efficient context sensing [5][11][19][20][21][22][29][31][46].

Power profiling and modeling: Power profiles and models are
important baselines for energy optimization in mobile systems.

3 2 servers × 0.5 min. × 5.6e+6 requests = 5.6e+6 server•min. = 3888 server•day.
4 http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx

There have been extensive efforts to build accurate models for the
power consumption of mobile apps and phone H/W [6][7][36]
[42][43][55][56][57], on which the power model that we adopt
for accurate power estimation is built. Similar to our emulation-
based approach, WattsOn provides a tool to emulate apps’ power
use in development environments to support app developers [36].
Unlike our work, it targets interactive foreground apps and thus
focuses on power emulation for display, CPU, and network. We,
however, address the power impact of background sensing apps.

Energy diagnosis of running apps: Several works address
energy diagnosis problems such as abnormal battery drain due to
bugs and misconfigured apps [4][33][40][44]. They help users
find the causes of undesirable battery drain and fix them. We
complement these works with the expected power impact of
continuous sensing apps before installing them, helping users
make informed decision in advance.

Human battery interaction: Literatures on human-battery
interaction for mobile users examined battery-charging behavior
[9][49], user perception of battery interface [10][49], and change
of user behavior by battery awareness [3]. However, since they
mostly focus on conventional mobile apps, they did not address
issues and concerns related to continuous sensing apps. As an
early attempt, our previous study reported users’ concerns about
running continuous sensing apps [35]. Their different battery
drain depending on user behavior could embarrass users due to
disparities between users’ anticipation of the near-future battery
status and the actual outcome. It proposed a novel tool to provide
user behavior-dependent battery drain information while running
sensing apps, and showed its effectiveness. Unlike this work,
PowerForecaster focuses on providing power impact of sensing
apps at pre-installation time and thereby helps users make better
informed decision in advance.

Mobile app testing: Recently, there have been research efforts to
develop autonomous testing frameworks for mobile apps using
mobile emulators [16][50][27]. They use a monkey tool to
automate the execution of mobile apps by generating streams of
user interface events and analyze runtime properties such as app
crashes and page contents systematically on the emulator. Our
system differs from those in two aspects. First, for the execution
of sensing apps, we replay sensor data streams and sensor status,
which are the major input of sensing apps. Second, we emulate
the power state of sensor devices for the power impact estimation.

11. CONCLUSION
In this paper, we present PowerForecaster, a system that provides
users with personalized power impact of continuous sensing apps
prior to installation. We show that individual user behavior is a
key to understand power impact of continuous sensing apps. We
developed a novel user behavior-aware power emulator estimating
power use by sensing apps based on user’s real behavioral traces.
We implemented and extensively evaluated the PowerForecaster
prototype in terms of accuracy, speed, and system overhead.

12. ACKNOWLEDGMENTS
We thank our shepherd, Dr. Kiran Rachuri and anonymous
reviewers for their valuable comments. This work was supported
by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIP) (No. 2011-0018120). The
corresponding author is Seungwoo Kang.

42

13. REFERENCES
[1] Accupedo.

http://play.google.com/store/apps/details?id=com.corusen.ac
cupedo.te

[2] Android emulator.
http://developer.android.com/tools/help/emulator.html

[3] Athukorala, K., Lagerspetz, E., von Kügelgen, M., Jylhä, A.,
Oliner, A. J., Tarkoma, S., and Jacucci, G. How carat affects
user behavior: implications for mobile battery awareness
applications. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems (CHI),
2014.

[4] Battery Doctor.
http://ksmobile.com/product/battery-doctor.html

[5] Chu, D., Lane, N. D., Lai, T. T. T., Pang, C., Meng, X., Guo,
Q., Li, F., and Zhao, F. Balancing energy, latency and
accuracy for mobile sensor data classification. In
Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2011.

[6] Dong, M., and Zhong, L. Self-constructive high-rate system
energy modeling for battery-powered mobile systems. In
Proceedings of the 9th international conference on Mobile
systems, applications, and services (MobiSys), 2011.

[7] Dong, M., Lan, T., and Zhong, L. Rethink energy accounting
with cooperative game theory. In Proceedings of the 20th
annual international conference on Mobile computing and
networking (MobiCom), 2014.

[8] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D.,
Govindan, R., and Estrin, D. Diversity in smartphone usage.
In Proceedings of the 8th international conference on Mobile
systems, applications, and services (MobiSys), 2010.

[9] Ferreira, D., Dey, A. K., and Kostakos, V. Understanding
human-smartphone concerns: a study of battery life. In
Pervasive Computing, 2011.

[10] Ferreira, D., Ferreira, E., Goncalves, J., Kostakos, V., and
Dey, A. K. Revisiting human-battery interaction with an
interactive battery interface. In Proceedings of the 2013
ACM international joint conference on Pervasive and
ubiquitous computing (UbiComp), 2013..

[11] Georgiev, P., Lane, N. D., Rachuri, K. K., and Mascolo, C.
DSP.Ear: Leveraging CO-Processor Support for Continuous
Audio Sensing on Smartphones, In Proceedings of the 12th
ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2014.

[12] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. Reran:
Timing-and touch-sensitive record and replay for android. In
Proceedings of 35th International Conference on Software
Engineering 2013 (ICSE), 2013.

[13] Gonzalez, M. C., Hidalgo, C. A., and Barabasi, A. L. (2008).
Understanding individual human mobility patterns. Nature,
453(7196), 779-782.

[14] Google Fit,
https://play.google.com/store/apps/details?id=com.google.an
droid.apps.fitness

[15] Google I/O 2015, https://events.google.com/io2015
[16] Hao, S., Liu, B., Nath, S., Halfond, W. G. J., and Govindan,

R. PUMA: Programmable UI-Automation for Large-Scale
Dyanmic Analysis of Mobile Apps. In Proceedings of the
12th international conference on Mobile systems,
applications, and services (MobiSys), 2014.

[17] iOS simulator.
https://developer.apple.com/library/ios/documentation/IDEs/
Conceptual/iOS_Simulator_Guide/

[18] Itani, W., Kayssi, A., and Chehab, A. Privacy as a Service:
Privacy-Aware Data Storage and Processing in Cloud
Computing Architecture. In Proceedings of the 8th IEEE
International Conference on Dependable, Autonomic and
Secure Computing (DASC), 2009.

[19] Ju, Y., Lee, Y., Yu, J., Min, C., Shin, I., and Song, J.
SymPhoney: a Coordinated Sensing Flow Execution Engine
for Concurrnet Mobile Sensing Applications. In Proceedings
of the 10th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2012.

[20] Ju, Y., Min, C., Lee, Y., Yu, J., and Song, J. An Efficient
Dataflow Execution Method for Mobile Context Monitoring
Applications. In Proceedings of the 11th IEEE International
Conference on Pervasive Computing and Communications
(PerCom), 2013

[21] Kang, S., Lee, J., Jang, H., Lee, Y., Park, S., and Song, J.
(2010). A scalable and energy-efficient context monitoring
framework for mobile personal sensor networks. IEEE
Transactions on Mobile Computing, 9(5), 686-702.

[22] Kang, S., Lee, Y., Min, C., Ju, Y., Park, T., Lee, J., Rhee, Y.,
and Song, J. Orchestrator: An active resource orchestration
framework for mobile context monitoring in sensor-rich
mobile environments. In Proceedings of the 8th IEEE
International Conference on Pervasive Computing and
Communications (PerCom), 2010

[23] Kim, D. H., Kim, Y., Estrin, D., and Srivastava, M. B.
Sensloc: sensing everyday places and paths using less energy.
In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2010.

[24] Lane, N. D., Chon, Y., Zhou, L., Zhang, Y., Li, F., Kim, D.,
Ding, G., Zhao, F., and Cha, H. Piggyback CrowdSensing
(PCS): energy efficient crowdsourcing of mobile sensor data
by exploiting smartphone app opportunities. In Proceedings
of the 11th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2013.

[25] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T.,
and Campbell, A. T. A survey of mobile phone sensing.
Communications Magazine, IEEE, 48(9), 140-150.

[26] Lee, J. and Hoh, B. Sell Your Experiences: A Market
Mechanism based Incentive for Participatory Sensing. In
Proceedings of the 8th IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2010.

[27] Lee, K., Flinn, J., Giuli, T. J., Noble, B., and Peplin, C.
AMC: Verifying User Interface Properties for Vehicular
Applications. In Proceedings of the 11th international
conference on Mobile systems, applications, and services
(MobiSys), 2013.

[28] Lee, Y., Iyengar, S. S., Min, C., Ju, Y., Kang, S., Park, T.,
Lee, J., Rhee, Y., and Song, J. (2012). Mobicon: a mobile
context-monitoring platform. Communications of the ACM,
55(3), 54-65.

[29] Lee, Y., Ju, Y., Min, C., Kang, S., Hwang, I., and Song, J.
CoMon: Cooperative Ambience Monitoring Platform with
Continuity and Benefit Awareness. In Proceedings of the
10th international conference on Mobile systems,
applications, and services (MobiSys), 2012.

[30] Lee, Y., Min, C., Hwang, C., Lee, J., Hwang, I., Ju, Y., Yoo,
C., Moon, M., Lee, U. and Song, J. Sociophone: Everyday

43

face-to-face interaction monitoring platform using multi-
phone sensor fusion. In Proceeding of the 11th annual
international conference on Mobile systems, applications,
and services (MobiSys), 2013.

[31] Lu, H., Yang, J., Liu, Z., Lane, N. D., Choudhury, T., and
Campbell, A. T. The Jigsaw continuous sensing engine for
mobile phone applications. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2010.

[32] Luo, C., and Chan, M. C. SocialWeaver: collaborative
inference of human conversation networks using
smartphones. In Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2013.

[33] Ma, X., Huang, P., Jin, X., Wang, P., Park, S., Shen, D.,
Zhou, Y., Saul, L.K., and Voelker, G. M. eDoctor:
Automatically Diagnosing Abnormal Battery Drain Issues on
Smartphones. In Proceedings of 10th USENIX Symposium
on Networked Systems Design and Implementaton (NSDI),
2013.

[34] Miklas, A. G., Gollu, K. K., Chan, K. K., Saroiu, S.,
Gummadi, K. P., and De Lara, E. Exploiting social
interactions in mobile systems. In Proceedings of the 9th
international conference on ubiquitous
computing (UbiComp), 2007.

[35] Min, C., Yoo, C., Hwang, I., Kang, S., Lee, Y., Lee, S., Park,
P., Lee, C., Choi, S., and Song, J. Sandra Helps You Learn:
the More You Walk, the More Battery Your Phone Drains.
In Proceedings of the 2015 ACM international joint
conference on Pervasive and ubiquitous computing
(UbiComp), 2015.

[36] Mittal, R., Kansal, A., and Chandra, R. Empowering
developers to estimate app energy consumption. In
Proceedings of the 18th annual international conference on
Mobile computing and networking (MobiCom), 2012.

[37] Mohan, P., Padmanabhan, V. N., and Ramjee, R. Nericell:
rich monitoring of road and traffic conditions using mobile
smartphones. In Proceedings of the 6th ACM conference on
Embedded network sensor systems (SenSys), 2008.

[38] Monsoon power monitor.
http://msoon.com/LabEquipment/PowerMonitor/

[39] NoomWalk.
http://play.google.com/store/apps/details?id=com.noom.walk

[40] Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and
Tarkoma, S. Carat: Collaborative energy diagnosis for
mobile devices. In Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2013.

[41] Paek, J., Kim, J., and Govindan, R. Energy-efficient rate-
adaptive GPS-based positioning for smartphones. In
Proceedings of the 8th international conference on Mobile
systems, applications, and services (MobiSys), 2010.

[42] Pathak, A., Hu, Y. C., and Zhang, M. Where is the energy
spent inside my app?: fine grained energy accounting on
smartphones with eprof. In Proceedings of the 7th ACM
european conference on Computer Systems (EuroSys), 2012.

[43] Pathak, A., Hu, Y. C., Zhang, M., Bahl, P., and Wang, Y. M.
Fine-grained power modeling for smartphones using system
call tracing. In Proceedings of the sixth conference on
Computer systems (EuroSys), 2011.

[44] Pathak, A., Jindal, A., Hu, Y. C., and Midkiff, S. P. What is
keeping my phone awake?: characterizing and detecting no-

sleep energy bugs in smartphone apps. In Proceedings of the
10th international conference on Mobile systems,
applications, and services (MobiSys), 2012.

[45] Pedometer2.0,
http://play.google.com/store/apps/details?id=com.csero.pedo
meter

[46] Ra, M., Priyantha, B., Kansal, A., and Liu, J. Improving
Energy Efficiency of Personal Sensing Applications with
Heterogeneous Multi-Processors. In Proceedings of the 2012
ACM international joint conference on Pervasive and
ubiquitous computing (UbiComp), 2012.

[47] Rachuri, K. K., Efstratiou, C., Leontiadis, I., Mascolo, C.,
and Rentfrow, P. J. METIS: Exploring mobile phone sensing
offloading for efficiently supporting social sensing
applications. In Proceedings of the 11th IEEE International
Conference on Pervasive Computing and Communications
(PerCom), 2013.

[48] Rachuri, K. K., Mascolo, C., Musolesi, M., and Rentfrow P.
J. SociableSense: Exploring the Trade-offs of Adaptive
Sampling and Computation Offloading for Social Sensing. In
Proceeding of the 17th ACM Conference on Mobile
Computing and Networking (MobiCom), 2011.

[49] Rahmati, A., and Zhong, L. (2009). Human–battery
interaction on mobile phones. Pervasive and Mobile
Computing, 5(5), 465-477.

[50] Ravindranath, L., Nath, S., Padhye, J., and Balakrishnan, H.
Automatic and Scalable Fault Detection for Mobile
Applications. In Proceedings of the 12th international
conference on Mobile systems, applications, and services
(MobiSys), 2014.

[51] Sensor Simulator,
https://code.google.com/p/openintents/wiki/SensorSimulator

[52] Tan, W. T., Baker, M., Lee, B., and Samadani, R. The sound
of silence. In Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2013.

[53] Tian, H., Ruogu Z., and Guoliang Xing. COBRA: color
barcode streaming for smartphone systems. In Proceedings
of the 8th international conference on Mobile systems,
applications, and services (MobiSys), 2010.

[54] Windows phone 8.1 emulators.
http://www.microsoft.com/en-
us/download/details.aspx?id=44574

[55] Xu, F., Liu, Y., Li, Q., and Zhang, Y. V-edge: Fast Self-
constructive Power Modeling of Smartphones Based on
Battery Voltage Dynamics. In Proceedings of the 10th
USENIX SymPosium on Networked Systems Design and
Implementation (NSDI), 2013.

[56] Yoon, C., Kim, D., Jung, W., Kang, C., and Cha, H.
AppScope: Application Energy Metering Framework for
Android Smartphone Using Kernel Activity Monitoring. In
USENIX Annual Technical Conference, 2012.

[57] Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao,
Z. M., and Yang, L. Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis, 2010.

44

