
 
Figure 1. Power impact at pre-installation time 

 

PowerForecaster: Predicting Smartphone Power Impact of 
Continuous Sensing Applications at Pre-installation Time 

Chulhong Min1, Youngki Lee2, Chungkuk Yoo1, Seungwoo Kang3, Sangwon Choi4, 
Pillsoon Park5, Inseok Hwang6, Younghyun Ju7, Seungpyo Choi1, Junehwa Song1 
1School of Computing, KAIST, 2School of Information Systems, Singapore Management University, 

3Computer Science and Engineering, KOREATECH, 4Information and Electronics Research Institute, KAIST, 
5Division of Web Science Technology, KAIST, 6IBM Research – Austin, 7Naver Labs 

1,5{chulhong, ckyoo, spchoi, pillsoon.park, junesong}@nclab.kaist.ac.kr, 2youngkilee@smu.edu.sg, 
3swkang@koreatech.ac.kr, 4sangwonc@kaist.ac.kr, 6ihwang@us.ibm.com, 7younghyun.ju@navercorp.com 

ABSTRACT 
Today’s smartphone application (hereinafter ‘app’) markets miss a 
key piece of information, power consumption of apps. This causes 
a severe problem for continuous sensing apps as they consume 
significant power without users’ awareness. Users have no choice 
but to repeatedly install one app after another and experience their 
power use. To break such an exhaustive cycle, we propose 
PowerForecaster, a system that provides users with power use of 
sensing apps at pre-installation time. Such advanced power 
estimation is extremely challenging since the power cost of a 
sensing app largely varies with users’ physical activities and 
phone use patterns. We observe that the time for active sensing 
and processing of an app can vary up to three times with 27 
people’s sensor traces collected over three weeks. 
PowerForecaster adopts a novel power emulator that emulates the 
power use of a sensing app while reproducing users’ physical 
activities and phone use patterns, achieving accurate, personalized 
power estimation. Our experiments with three commercial apps 
and two research prototypes show that PowerForecaster achieves 
93.4% accuracy under 20 use cases. Also, we optimize the system 
to accelerate emulation speed and reduce overheads, and show the 
effectiveness of such optimization techniques. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems 

Keywords 
Power impact; Sensing applications; Pre-installation; Smartphone 

1. INTRODUCTION 
Today’s smartphone app markets help users select desirable apps, 
providing diverse information such as features, screenshots, and 
user comments; however, they are missing a key piece of 
information: power consumption by an app. Users can only find 
out whether an app is power hungry after they install and use it. 
They count on such experiential perception to decide whether they 
keep the app or how long they use it. However, continuous 

sensing apps [25][28] make such experiential power control no 
longer effective. They continuously drain battery in the 
background without a user’s explicit awareness. For example, a 
pedometer app, Accupedo [1], consumes up to 200 mW of 
additional power, causing an early shutdown of a user’s phone. 

What if an app market provided the estimated power use of a 
sensing app? Given such information, users could make better 
informed decisions, even prior to installing the apps. Users are 
relieved of exhaustive trial and error, can decide judiciously to 
install a certain app, and may be less embarrassed with rapid 
battery depletion if they decide to accept the expected battery cost. 

It is not straightforward to realize such a function in reality. A 
trivial way is for an app developer to post the average power of an 
app for common use cases. However, we noticed that such a 
reported power number would not be accurate for many individual 
users. The deviation mainly results from that the power use of a 
sensing app varies noticeably depending on users’ physical 
activities, phone use, and other environmental factors. The error 
becomes even larger when the app applies various optimization 
techniques such as triggering power-hungry GPS with low-power 
accelerometers (See Section 2.2). 

In this paper, we propose PowerForecaster, a system to provide 
an instant, personalized power estimation of a sensing app at pre-
installation time. Figure 1 shows the two mockup screenshots that 
users would see in an app market when the system is integrated. 
PowerForecaster aims at enabling a number of unique user 
experiences. First, it provides power estimation at pre-install time, 
removing the hassle of installing and using apps one after another 
until users find power-efficient apps. Second, estimation is highly 
personalized to reflect an individual user’s activity and phone use 
patterns, achieving higher estimation accuracies. Third, the system 
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supports a wide variety of sensing apps without requiring any 
changes in the apps or additional information from developers. 

To realize the unique features above, we take a trace-driven 
emulation approach. The key idea is (1) to pre-collect sensor and 
device usage traces on a user’s real phone, which represent a 
user’s physical activities and phone use patterns, respectively, and 
(2) to build a power emulator that assesses expected power use of 
a sensing app based on the pre-collected traces. The emulator 
executes the target sensing app over the sensor traces and tracks 
changes in the power states of key hardware components. At the 
end, it maps each power state into a power number and calculates 
total power consumption by aggregating all the power numbers 
caused by hardware use. In addition, it tracks the hardware use of 
other apps by replaying the device usage traces for accurate net 
power estimation. Note that a sensing app runs continuously and 
shares hardware with other apps. In this way, the system estimates 
power impact of the target app, accurately reflecting user behavior. 

We address a number of technical challenges to make our 
approach feasible. Most importantly, we designed our own 
Android power emulator with significant extension to the original 
Android emulator to support various sensors, trace replay, and 
power tracking. The Android emulator [2] does not track power 
states of hardware components or emulate common sensor devices 
such as accelerometers. Moreover, it does not feed pre-collected 
sensor traces to the emulator, thereby precluding the possibility of 
emulation over users’ real traces. Other existing emulators also 
[17][54] do not support power emulation of sensing apps. 

We further optimize PowerForecaster to make its emulation fast 
and its collection of traces power efficient. First, it is needed to 
use longer user behavior traces for reliable power estimation, but 
this makes emulation very time consuming. The emulation by 
default takes as much time as the length of original traces. 
Advance emulation is challenging due to enormous combinations 
of users, sensing apps, and their version updates. PowerForecaster 
achieves fast emulation by (a) fast-forwarding replays in a way to 
capture changes in power states only and (b) parallelizing replays 
on multiple emulator instances. Our evaluation shows that it 
emulates 18-hour long traces within half of a minute, with a small 
error (6-7%). Second, it incurs nontrivial power overhead to 
collect sensor traces on a user’s phone. From our empirical 
experiences, we developed a balanced duty-cycling policy to 
minimize necessary data collection while keeping power 
estimation accuracy high. Users do not need to repetitively collect 
sensor traces for various sensing apps. Instead, they collect traces 
for a day or two reflecting their behavior once and reuse them. 

The contributions of this paper are summarized as follows. First, 
we show that continuous sensing apps’ power use varies 
significantly depending on user behaviors, which motivates the 
need for personalized power estimation. Second, we premiere an 
accurate power estimation system for sensing apps, providing 
user-specific power estimation at pre-installation time. Third, we 
present our system optimization for fast estimation and energy-
efficient trace collection. Finally, we demonstrate the accuracy 
and overheads of the system through extensive experiments. 

2. MOTIVATION 
2.1 Motivating Scenario 
Krystal, a businesswoman in her 20s, intends to walk more when 
she commutes and meets her clients. She searches for a pedometer 

app to organize her walking and is happy to find a long list of 
apps on Google Play. She carefully selects and installs one with 
the claim by the developer: “Consumes less than 5% of battery 
per day. Tested on a dozen popular phone models.” However, she 
gets embarrassed finding her phone unexpectedly powered off in 
the afternoon. She gets upset, repeating installing and uninstalling 
one app after another. Positive comments on the battery efficiency 
were not consistent with her experiences. Even after a week, she 
could not find a satisfactory app. PowerForecaster addresses such 
discrepancies in advance. Figure 1 depicts what she would see for 
pedometer apps. For each, it shows the estimated decrement of 
her own phone’s daily battery life if she installed and used the 
app. She can find the least battery consuming app suitable for her 
own daily life patterns without relying on doubtful claims and 
comments from developers and other users. 

2.2 Unveiling the Cause: User Behaviors 
What causes such discrepancies between Krystal’s experience and 
the developer’s estimates or other users’ experiences? It is mainly 
from diversity in individual user behavior, especially their 
physical activities and phone use. Users’ different activities 
trigger different branches of logic in the same sensing app. For 
example, many apps adopt conditional sensing pipelines for 
power optimization, using low and high power sensors selectively 
[23][30][32]. Actual power use largely depends on how often and 
long the user’s activities trigger the conditions. Different phone 
use patterns also affect net power increase of a sensing app as it 
shares hardware resources with other apps while running in the 
background [24]. For example, the app obtains already-triggered 
wakelocks at almost zero cost, a major power consumer otherwise. 

We quantify the impact of user behavior on battery use with data 
traces from 27 people over two example sensing apps. 

Data traces. We collected sensor and phone usage traces from 27 
participants for three weeks (14 undergraduates, 7 company 
employees in their 20s-50s, 5 graduates in their 20s-30s, and 1 
housewife in her 50s). We deployed a data-logging app on their 
phones. Data collection was set to 12 hours a day (from 10AM to 
10PM), but actual collection time varied due to battery depletions. 
We analyzed data collected more than 8 hours a day. 

Applications. We consider two sensing apps inspired by previous 
works: (1) MyPath, a location tracker [41] and (2) ChatMon, a 
conversation monitor [32]. MyPath records the GPS trace of a 
user every 10 sec. It triggers GPS only when the user is moving 
which is detected from cheaper accelerometer sensing. ChatMon 
monitors speakers and conversation turns by sound sensing and 
processing. Sound sensing is triggered only when the user is close 
to someone else, which is checked by Bluetooth scans every 2 min. 

Effect of physical activities. We first computed the ratio of GPS 
activation time of MyPath to total execution time. Figure 2(a) 
shows the cumulative distribution of GPS activation time ratio. 
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Figure 3. PowerForecaster architecture 

The average ratio per user ranges from 5.7% to 20.2% (mean: 
12%, SD: 3.2%). Assuming that MyPath runs 12 hours a day, the 
top user activates GPS 1.5 hours more than the bottom. We 
similarly show the ratio of sound sensing activation time of 
ChatMon, which monitors conversations with the top 5 frequently 
encountered people. Figure 2(b) shows the cumulative 
distribution of sound sensing activation time. The average ratio 
varied from 4.8% to 67.1% (mean: 34.9%, SD: 18.2%). The top 
user would activate 3.5 more hours of sound sensing than the 
average user, assuming that ChatMon runs 12 hours a day, which 
would cause a huge difference in users’ power use. 

Effect of phone uses. We further examined the effect of resource 
sharing by analyzing the net increase in CPU activation time 
caused by wakelocks ChatMon obtained. Here, we briefly discuss 
two different cases that show such sharing effect. First, two users, 
P6 and P13, showed similar activation time for sound sensing, but 
different net increase in CPU activation time. For both users, 
sound sensing was activated for 29% of the total duration. 
However, P6’s CPU was solely activated by ChatMon for 15% of 
the total duration, while 22% was activated in case of P13. This 
difference comes from that P6 used his phone for other purposes 
for longer duration compared to P13, so P6’s CPU was activated 
more already by other apps. Second, for the other case, P8, P15, 
and P16 showed similar sound sensing activation time, around 
40%. However, they exhibited fairly different net increase in CPU 
activation time: 30%, 40%, and 33%, respectively. This indicates 
that phone use of individual users would affect net power 
consumption of a sensing app due to the sharing effect. 

3. POWERFORECASTER DESIGN 
3.1 Design Goals 
Installation-free: PowerForecaster relieves tedious installation 
trials caused by sensing apps’ unknown battery use. To this end, 
PowerForecaster needs to provide users with estimated battery 
consumption before they install and use the apps. 

Accuracy: Power estimation should be accurate and reflect what 
users will experience when they actually use the apps. It needs to 
be tailored to reflect users’ different behaviors. 
Latency: Estimation needs to be performed in a short time to 
support on-the-fly requests from users. 
Coverage: PowerForecaster aims at providing power estimation 
without modifying app binaries; any requirement to change the 
apps would significantly diminish its utility. 
Overhead: PowerForecaster should minimize the overhead on 
users’ mobile phones, especially to pre-collect various sensor 
traces and device usage traces required for power emulation. 

3.2 Power Emulation Approach 
We devise a user behavior-aware power emulation approach. The 
key idea is to reproduce the real execution environment of a target 
app and track its power use while replaying it over pre-collected 
traces of sensor and device usages. It has three advantages: (1) It 
accounts for major user-dependent variables, physical activities, 
and phone use patterns, which significantly affect the target app’s 
power consumption. (2) It estimates power use of an app with no 
knowledge on its internal logic or prior power profiling required. 
The emulator tracks hardware use of the app by executing its 
executable with no need of its source code. (3) It considers shared 
hardware use with existing apps by reproducing their resource use. 

There have been other approaches to estimate mobile apps’ power 
use, but it is not trivial to apply them to the accurate estimation of 
sensing apps. Development-time estimation, direct measurement 
with a power meter or model-based schemes [42][56][57], hardly 
reflects individual user behavior, which largely affects sensing 
apps’ power use. Another potential approach is collaborative 
power estimation. It shares power impact of sensing apps obtained 
from users who already used the app. The power numbers from 
the users with similar behaviors are provided to a potential user; a 
similar concept is proposed in [40] for energy diagnosis. However, 
this requires a large user base to find similar users due to plenty 
combinations of behavioral factors affecting power use of sensing 
apps. We believe PowerForecaster can complement this approach, 
as it works based on personal traces without a large user pool. 

3.3 System Overview 
PowerForecaster takes the executable of a target sensing app as an 
input and provides a personalized estimation of the target app’s 
net power increase (mW) as an output. Later, the power numbers 
can be processed in various ways for user-friendly presentation 
(See Section 8 for examples). Figure 3 shows the architecture of 
PowerForecaster. It consists of two major components, a mobile-
side trace collector and a cloud-side power emulator. Prior to 
power estimation requests, the mobile-side collector pre-collects 
user behavior traces (possibly for one weekday and one weekend 
reflecting user behavior). The traces are uploaded to and managed 
in the cloud server. Upon a request, the power emulator estimates 
power impact of a target app with the pre-collected traces. 

Mobile-side: The mobile-side component collects user behavior 
traces in the background. The sensor trace collector collects a 
series of sensor data that captures users’ physical activities. The 
device usage trace collector logs hardware component usages by 
existing apps, which are potentially sharable with a new sensing 
app. Not to interfere with usual phone use, the traces are uploaded 
to the cloud server only when the phone is on Wi-Fi and charging. 
The collected traces are used for various sensing apps in the future. 

Cloud-side: Upon a power estimation request, the user behavior-
aware power emulator executes the target app’s executable and 
monitors its hardware usage. At the same time, it replays the 
sensor and device usage traces to reproduce the execution 
environments affecting the power impact of the app. As a result, 
the emulator obtains detailed hardware usage statistics including 
which, when, and how long hardware components are used. The 
power impact estimator computes the net power increase due to 
the app based on the cumulative statistics during the emulation. 

3.4 System Scope and Limitations 
It is extremely challenging to achieve all of our design goals for 
generic workloads and users. We clarify the scope and limitations 
of this study and our current system prototype.  
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Table 2. Representative resource request APIs 

Resource type Request APIs Parameters

CPU acquire() / release() on WakeLock timeout, ref. count
setRepeating() / cancel() 
on AlarmManager

alarm type, trigger 
time, trigger interval

GPS requestLocationUpdates() / 
removeLocationUpdates() 
on LocationManager

provider, minDelay, 
minDistance, criteria

Bluetooth startDiscovery() / stopDiscovery() 
on BluetoothAdapter

Other sensors
(Accel., Gyro, ...)

registerListener() / unregisterListener() 
on SensorManager

sensor type, 
sampling rate

 

Table 1. Sensor data, system call, and events 
Sensor Type Sensor Data Related System Call Related System Event

GPS longitude, 
latitude, altitude, 
speed, bearing

gps_start(), 
gps_stop(), 
…

GPS_EVENT_STARTED,
GPS_EVENT_STOPPED, 

Bluetooth name, address, 
bond state, type, 
UUIDs, RSSI

startDiscoveryNative(),
stopDiscoveryNative(),
…

ACTION_FOUND, 
ACTION_DISCOVERY
_STARTED/_FINISHED

Wi-Fi BSSID, SSID, 
capabilities, 
frequency, level

scan(),
wifi_ctrl_recv()

SCAN_RESULTS
_AVAILABLE_ACTION

Other sensors
(accel. gyro, ...)

values enableSensor(),
disableSensor()  

Target apps: Our system focuses on continuous sensing apps that 
continuously run in the background, such as Google Fit [14], 
Accupedo [1], and NoomWalk [39]. Specifically, we focus on 
their autonomous sensing services that perform repetitive sensing 
tasks controlled by built-in sensing logics and programmatically 
detectable external events. We do not target conventional apps 
and sensing apps’ UI activities, which are explicitly run and quit 
by users. The rationale behind this choice is that, for conventional 
apps, users retain controllability on how much they use the apps 
and thereby also on the apps’ power use to some extent. For 
sensing apps, continuous sensing is a major drain on power. UI 
activities consume relatively less power as they are likely run for a 
short time compared to the whole operation time of sensing apps. 

Tracked hardware components: For power estimation, our 
prototype considers hardware components commonly used by 
sensing apps: inertial sensors, GPS, Bluetooth and Wi-Fi scans, 
microphone, and CPU. (See Section 5.3 for details.) We have not 
yet considered other components such as display, network, or 
GPU, as those are used less commonly in sensing apps and 
contribute little to the overall power impact. Section 7 shows that 
our prototype estimates power use of various sensing apps with 
average error of 6.6%, considering aforementioned components. 
We understand that there are a few examples [53] using other 
components. Our emulation can further expand to consider such 
components by leveraging various power models proposed in 
[36][42]. For example, network power cost can be considered by 
tracking relevant factors such as packet transmission time and 
signal strength and by reproducing them in the emulator [36].  

Selection of user traces: For accurate power estimation, it is 
important to collect user behavior traces that well reflect a user’s 
common daily behavior. Of course, there could be daily variations 
of user behaviors, but literature has showed that user behaviors 
have patterns [8][13][34]. Our ultimate goal is to accurately 
predict the future power impact of a target app by considering 
routines and patterns of user behaviors. In this study, we focus on 
developing a power emulation system that precisely estimates net 
power increase of an app given proper behavioral traces. We leave 
capturing a user’s routine as a future work. 

Scalability to heterogeneous phones: It is well known that it is 
needed to build power models specific to individual phone models 
for accurate tracking of apps’ power use. This raises a scalability 
issue, as a variety of phone models exist in today’s market. Our 
system will face the same problem for its wider deployment as the 
core technique is based on pre-built power models. Note that our 
prototype incorporates power models for Nexus S and Nexus 5. 

To be optimistic, a few phone models take considerable market 
share currently. Three popular iPhone models and top-10 Android 

ones take 70%1 and 33%2 of iPhone and Android market share, 
respectively. Power modeling for those popular models will be 
feasible (even if manual measurements need to be involved). This 
possibly makes wide deployment of PowerForecaster feasible in 
practice, dealing with heterogeneous phones. For less-common 
models, we can consider other approaches. For example, most 
hardware chipset manufactures open up power profiles per 
different hardware states, and the profiles can be incorporated into 
PowerForecaster. In case such information is not available or the 
power consumption is not stable across the same phone models 
[6][57], we can leverage prior works to automatically self-
construct power models for unknown phones [6][55]; these works 
achieve an accuracy of 90%-95%. Once power models are 
available, they can be easily incorporated into our system as we 
modularize it in a way to include new power models.  

4. USER BEHAVIOR DATA COLLECTION 
In this section, we explain what data are collected by the trace 
collector in detail. Section 5 describes how the collected data are 
used for power emulation. 

Sensor trace: The sensor trace collector collects sensor data that 
reflect physical user behaviors. More specifically, it records three 
types of information. First, it records sensor data streams with 
timestamps from frequently used target sensors. Second, it records 
sensor-related system events notified from Android, e.g., 
gps_event_started. Such events are needed to ensure correct 
replays of sensing apps since many of them use these events as 
triggers to internal logic. Last, it hooks and logs the system calls 
and callbacks between the Android framework/kernel and the app. 
These are required to reproduce power states in sensor devices, as 
in users’ real situations. For example, the time to activate GPS 
sensing largely depends on whether a user is outdoors or not. 
Recording GPS values alone is not sufficient to emulate such cold 
start, which subsequently affects the accuracy of power emulation. 
Table 1 shows sensor data, events, and system calls that we collect. 

Device usage trace: Another important factor for accurate power 
emulation is to consider shared use of resources, as shown in 
Section 2.2. A naïve method is to emulate other apps 
concurrently with a target sensing app and accurately trace shared 
use of various hardware components. However, it requires heavy 
computation to emulate multiple apps concurrently. It is also 
challenging to log and replay realistic user inputs for foreground 
interactive apps. Thus, we take an approach to record only the 
device usages of existing apps and estimate sharing effects on the 
                                                                 
1 http://info.localytics.com/blog/more-iphone-6%E2%80%99s-being-sold-but-iphone-

6-shows-stronger-user-engagement 
2 http://info.localytics.com/blog/android-device-samsung-maintains-dominance 
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Figure 4. Architecture of user behavior-aware power emulator 

emulation process. This enables to accurately account shared use 
of hardware with other apps without directly executing them. 

The device usage trace collector records the requests from the 
existing apps to various hardware components, e.g., wakelocks for 
CPU, with timestamps. By replaying such requests while 
emulating the sensing app, it is possible to identify the shared 
accesses to various hardware components between the target 
sensing app and other apps. This can be reflected upon accounting 
the power impact of the target sensing app, resulting in more 
accurate estimation. Android exposes a narrow set of APIs that 
allows apps to request access to hardware such as sensors and 
CPUs. The collector logs a series of the API calls and parameters. 
Table 2 shows what our prototype collects in more detail. 

5. USER BEHAVIOR-AWARE POWER 
EMULATION 
Simply using existing mobile emulators [2][17][54], or their naïve 
extensions is not a feasible solution to emulate power use of 
sensing apps. Since their main goal is for testing and debugging of 
mobile apps, they do not support power monitoring during 
emulation. Also, they cannot reproduce a user’s behavioral 
environments, which are essential for accurate power estimation. 
While there are simple sensor simulation tools, their functionality 
is highly limited for our purpose, as we will discuss in 5.1. 

To address the issues, we develop a novel user behavior-aware 
power emulator by significantly extending the existing Android 
emulator. Figure 4 shows its architecture. Overall operation flow 
consists of the following three stages. 

Pre-emulation stage: Upon a request, the emulator manager 
prepares the necessary inputs for emulation. It first obtains sensor 
and device usage traces from the trace manager as well as the 
executable of the target sensing app. It then initiates a set of 
power emulator instances in parallel to reduce the estimation 
latency (Section 6.1). Each instance installs the target app and 
receives a part of user traces from the emulator manager. Before 
executing the app, it replays pre-generated user interaction such as 
clicking a start button to bootstrap the app if necessary. It also 
adjusts its system clock to synchronize the time with the traces. 

Power-emulation stage: After the preparation, the power 
emulator instance executes the target sensing app. While the app 
is running, the sensor emulator mimics the operation of sensors to 
fulfill the app’s requests on sensor use by using the pre-collected 
sensor traces (Section 5.1). To consider the sharing effect, the 
device usage replayer reproduces the existing app’s device use 
based on the device usage trace (Section 5.2). This allows the 

target app to execute as if it were running along with other apps. 
During the execution, the hardware usage monitor tracks system 
calls made to use hardware components such as sensors and CPU. 
At the end, it generates hardware usage statistics, a series of 
executed system calls along with corresponding timestamps. 

Post-emulation stage: With the collected hardware usage 
statistics, the power impact estimator computes the net increase in 
power consumption by the target app (Section 5.3). For power 
estimation, we adopt a system call-based method using power 
profiles obtained by offline profiling [42]. We consider the 
following hardware components mainly used by sensing apps: 
CPU, GPS, inertial sensors, microphone, Bluetooth/Wi-Fi scans. 

5.1 Sensor Emulation 
The sensor emulator reproduces a user’s physical behavior 
conditions by feeding the user’s real sensor traces to the target app. 
For realistic emulation, it should feed sensor data at accurate 
timing and rate as the app demands. It should also emulate the 
hardware states of the corresponding sensor devices and account 
for power estimation afterwards. 

Existing sensor data replay tools [12][51] do not meet our 
requirements. SensorSimulator [51] provides a custom library that 
relays pre-collected sensor data from a host PC to a mobile 
emulator. However, it requires app-side modification to use the 
library. ReRan [12] records and replays input events such as touch 
events and sensor data during the execution of an app for testing 
and debugging. While it does not require any modification of the 
app logic, the target app has to be executed during sensor data 
collection, which violates our pre-installation requirement. Also, 
both of them do not emulate the power state of sensor devices. 

We develop a sensor emulator that mimics real sensor devices’ 
operation and states. First, it provides apps with pre-collected 
sensor data while fulfilling their specific requests. Second, it 
replays sensor-related system events for correct app operations. 
Third, it tracks the changes in expected power states based on the 
sensor-related system call and callback logs to and from the kernel. 
The sensor emulator is located between the Android framework 
and the kernel, which is a middle layer that receives sensor data 
requests from multiple apps and interacts with the kernel. It hooks 
the sensor-related system calls from the framework to the kernel 
and provides sensor data using the collected trace. 

Accelerometer, gyroscope, etc: The sensor emulator hooks all 
sensor activation and deactivation requests from the Android 
SensorManager to the kernel. To handle an activation request, it 
searches for sensor data corresponding to the request time from 
the collected trace and pushes them into the sensing app. Also, the 
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sensor emulator performs a sampling of data in the sensor trace if 
necessary to meet the rate requirement of the sensing app. 

GPS: The sensor emulator hooks GPS requests from the Android 
LocationManager to the kernel. Upon a request, it searches for 
GPS data corresponding to the request time and sends the data 
after the activation time recorded in the GPS traces. It is important 
to consider the activation time in a user’s real situation, since it 
varies depending on the user environment (e.g., indoors and 
outdoors) even with the same request. It affects both the sensing 
app’s execution and the power consumption of the GPS device. 
At times, there could be no GPS data exactly matching the request 
time since the GPS request interval of the app can be different 
from that used for the trace collection. The sensor emulator 
interpolates GPS data from two adjacent logs and uses them. 

Bluetooth and Wi-Fi scan: The sensor emulator intercepts scan 
requests from the Android BluetoothAdaptor and WifiManager. 
Upon the request, it retrieves scan logs with a timestamp closest to 
the request time from the collected trace and forwards them to the 
apps. To ensure the apps’ proper operation, it broadcasts relevant 
events, e.g., bluetooth-discovery-finished, scan-results-available-
action, which are recorded in the trace along with scan results. 

5.2 Device Usage Replay 
The device usage replayer reproduces a user’s phone use behavior 
to reflect the power-sharing effect in the emulation. The replayer 
runs in the background as an Android service simultaneously with 
the target sensing app. It uses the pre-collected device usage trace 
containing a list of time-stamped elements, (timestamp, API 
function, parameter values) as shown in Table 2. Based on the 
timestamp, the replayer calls the API with the parameter values. 

Since API calls to access hardware components usually operate as 
a pair, e.g., acquire()/release(), both API calls should be 
contained in the trace for the accurate power estimation. However, 
one API call of the pair could be omitted at times because of duty-
cycled data collection (Section 6.2) or the segmentation of device 
usage traces for parallel execution (Section 6.1). Before replaying 
the trace, the trace manager fills in the missing calls. For example, 
if there is only one release() in the given trace, it adds acquire() 
and set its timestamp to the beginning of the trace. 

5.3 Estimation of Power Impact 
During the emulation, the hardware usage monitor collects the 
hardware usage statistics, i.e., a collection of system calls made by 
the framework, and their timestamps. Sensor-related system calls 
are captured in the sensor emulator (See Table 1). To account for 
power use of the CPU, the hardware usage monitor intercepts 
wakelock requests, acquire_wake_lock() and release_wake_lock(), 
from the Android PowerManager to the kernel. Upon a request to 
acquire a wakelock, it also obtains CPU utilization of the target 
sensing app from /proc/stat until a release request. We properly 
scale the CPU utilization to compensate for the different CPU 
performances between the server and the smartphone as in [36]. 

After the emulation, the power impact estimator computes the net 
power increase by the target app, netPapp based on the hardware 
usage statistics. We compute netPapp as follows: 

= , 
where D is the set of hardware components app uses and PDwith_app 
and PDwithout_app are the power consumption of D with and without 
app, respectively. As noted earlier, our component set currently 

supports CPU, GPS, Bluetooth/Wi-Fi scans, microphone, 
accelerometer, gyroscope, and magnetometer. 

The power consumed by the aforementioned components is 
estimated with a system call-based power estimation [42]. We 
built a finite state machine (FSM)-based power model for each 
component based on associated system calls as in Figure 5. Then, 
we constructed an FSM for the entire device considering the 
sharing effect of system calls. The FSM-based power model 
facilitates to consider tail power state of hardware components 
and the sharing effect across system calls [42]. To make the power 
models, we profile the power states of the components for each 
system call using a power meter [38]. PDwith_app is computed based 
on FSM models and hardware usage statistics made during the 
emulation. PDwithout_app is done similarly based on the hardware 
usage statistics after replaying the device usage trace only. 

6. SYSTEM OPTIMIZATION 
6.1 Acceleration of Emulation 
A key challenge of emulation-based power estimation is a long 
execution time. Unlike typical apps, sensing apps operate closely 
tied to real-time clocks. They are governed by sampling rates, 
sensing intervals, and time window for data processing. Naïve 
emulation would take the same duration of sensor traces to replay. 
Powerful hardware may not necessarily reduce the emulation time 
for our workloads, e.g., reading accelerometer at 100Hz for 5 sec. 

To address the challenge, we develop 3 acceleration mechanisms: 
parallel execution, idle time skipping, and progressive estimation. 
Figure 6 shows them for a commercial pedometer app, Accupedo 
[1]. We leverage unique characteristics of continuous sensing 
apps. First, they usually operate by repeating cycles. While the 
operations could be stateful within a cycle, they might be stateless 
in between. This implies the potential of parallel emulation. 
Second, sensing apps wakes up the device as little as possible to 
save energy; active periods are much shorter than idle periods. 
Accupedo wakes up every 10 sec to detect the user’s movement 
with 20-ms accelerometer data and sleeps again if no movement. 
We can safely skip such long idle time to accelerate the emulation. 

Parallel execution: Given an original long trace, the emulator 
manager splits it into shorter segments, e.g., 2-min-long each, and 
assigns a segment to each emulator instance. Each executes a 
target app independently, replaying sensor and device usage traces 
in an assigned segment. Upon completion, the hardware usage 
statistics from each instance are aggregated for total power 
estimation. A practical issue in parallel execution is to determine a 
proper length of a segment. It should be short enough to exploit 
parallelism, but long enough to include the stateful behavior in a 
cycle. Ideally, proper segment size depends on the apps’ internal 
logic. Consider ChatMon detecting an encounter via BT scan 
every 2 min. The ideal segment size may be 2 min. Automatically 
identifying such sizes for each app is not trivial unless we know 
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Figure 7. Effect of duty-cycling; bars represent standard deviation 

the internal logic of the app in advance. In this paper, we use the 
same segment size for every app. We found that 2-min-long 
segments showed reasonable accuracy for all our example apps. 
An automatic solution might be possible, e.g., by analyzing 
repeated resource use patterns of a sensing app [33].  

Idle time skipping: The time accelerator shortens emulation by 
skipping idle times of the device during the emulation. We regard 
idle time as a period for which all CPU wakelock requests are 
released. The time accelerator identifies the start and end of the 
idle time from the Android PowerManager, which manages all 
wakelocks. Upon detecting all wakelocks have been released (the 
start time), the time accelerator scans the alarm schedule in the 
Android AlarmManager until the very next alarm (the end time). 
It skips the idle time by setting the system clock to the end time. 

Progressive estimation: Despite the significant reduction of 
emulation time by the techniques above, the final emulation time 
is bounded by the segment with the longest execution time. The 
execution time of a segment varies as idle time skipping is 
opportunistic upon user behavior. For more responsive service, 
we develop a progressive estimation. During the emulation, it 
estimates net power increase with interim results of emulation and 
progressively updates it. This technique does not reduce the 
execution time but reduces the first response time to the end user. 

6.2 Energy-efficient Trace Collection 
The trace collector collects sensor and device usage traces for 
power estimation of future sensing apps. The trace collection runs 
only for 1-2 days to reflect user behavior. Still, one might be 
concerned about the collector’s power use, as it is desirable to 
collect raw sensor data at the highest rate for future generic use. 

We applied a widely used duty-cycling technique to reduce power 
cost of the trace collector. The question is how far can we increase 
the cycle with minimal decrease of accuracy?. Figure 7 shows the 
estimation errors with respect to those without duty cycling and 
respective power overheads for various duty-cycles. We used two 
18-hour-long traces of MyPath obtained from the real deployment 
experiments in Section 8 and set the active data collection 
duration to 2 min for a period; during the active collection, the 
sensor data is recorded based on the configuration of a full sensor 
set (Table 4). Based on the results, we use a 24-min duty-cycle 
period, i.e., the ratio of 1/12, where the power cost starts to 
saturate and the error is still below 10% even with the deviation. 
Such duty cycling is possible since a user’s mobility, location and 
encounter tend to have temporal locality [8][13][34]. 

7. EVALUATION 
We implemented PowerForecaster; on mobile-side, we developed 
the sensor trace collector as an Android service. We modified the 

Android system to track device usage and existing apps’ hardware 
usage. On server-side, we developed the power emulator based on 
the Android emulator. We also made the user trace manager and 
power impact estimator in Java. PowerForecaster was evaluated 
for its accuracy, speed, and overhead for power emulation. 

7.1 Evaluation Setup 
We evaluated PowerForecaster under realistic settings with 
various apps and users with different behavioral characteristics.  

Phones and servers: We used Nexus S (Android 4.1.2) and 
Nexus 5 (Android 4.4.4) phones for the experiments; we used 
Nexus S phones by default. For emulation, we arranged 12 
desktop servers (with i7-2600k CPU and 16 GB RAM), where 
each server was configured to run one or more emulator instances 
in parallel. For a single power estimation request, the average 
CPU use was 5-10% per each emulator instance. We discuss the 
server-side resource use in more details in Section 7.3. We did not 
apply optimization techniques by default. 

Sensing apps: We mainly used three sensing apps including a 
commercial pedometer app, Accupedo [1], and the two research 
apps we developed, MyPath and ChatMon described in Section 2. 
Section 7.2.2 describes the applicability of our system to two 
more commercial apps, NoomWalk [39] and Pedometer2.0 [45]. 
The hardware components that the three commercial pedometer 
apps use in common are accelerometers and CPU. Note that, 
while diverse sensing apps have been proposed in a research 
domain, only a few types are commercialized, e.g., pedometers. 
To cover more diverse hardware usage, we selected MyPath and 
ChatMon. The former uses accelerometers, GPS, and CPU and 
the latter uses Bluetooth, a microphone, and CPU. 

Comparison: For ground truth of the net power increase (mW) of 
a target sensing app, we used Monsoon power monitors [38]. It is 
obtained as the difference in power consumptions between when 
running a target sensing app with existing apps, and when running 
existing apps only. We made three alternatives that developers can 
potentially use to provide power impact of sensing apps: 
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Table 3. Summary for five user behavior scenarios 

ID User Activity
User behavior parameter

Moving Indoor Encounter App usage

1 Graduate student 
(M, 30s)

Shopping 
alone 50 min 60 min 0 min 5 min

2 Undergraduate
student (M, 20s)

Moving
and class 10 min 45 min 15 min 20 min

3 Office worker
(F, 30s)

Moving
and lunch 20 min 40 min 60 min 15 min

4 Office worker
(M, 20s) Going out 30 min 30 min 40 min 30 min

5 Housewife
(F, 50s) Going out 30 min 30 min 40 min 1 min

 
Time (min) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

Mobility Walking Staying Walking Staying
In/Outdoor Outdoor Indoor
Encounter Alone Encounter
Phone usage Map W

eb Web Video
 

Figure 8. User behavior scenario 4 

 
Figure 9. Experimental setup 

Global-single measures the power using a power monitor while 
running the target app only, under a specific user behavior 
scenario, and provides it as an estimation result. 
Global-average measures the power uses of the target app under 
multiple user behavior scenarios. It takes an average value to 
provide a representative estimation. Note that this does not 
consider the shared power use with other apps. 
Global-single-shared measures the power while running both the 
target app and apps used in a specific user behavior scenario. 
Under this scenario, it provides an estimation taking into 
consideration the shared power use with other apps. Note that this 
baseline is equivalent to the ground truth of the chosen scenario. 

User behavior scenario: For accuracy evaluation, we performed 
scenario-based experiments. We craft multiple one-hour scenarios 
with four parameters: mobility, encounter, indoor/outdoor status, 
and phone usage. We determine the parameter values and their 
combinations based on real user data described in Section 2. 
Table 3 summarizes the five scenarios used for our experiments. 
Figure 8 depicts detailed sequences of user activities and phone 
usages for Scenario 4. Other scenarios are made similarly. 

Measurement and trace collection setup: For fair comparison, 
we need to ensure that the same user behaviors are applied while 
evaluating all the alternative techniques including the ground 
truth. We design a setup to easily conduct experiments over 
various alternatives. Figure 9 shows our setting with four phones 
(Phone A, B, C, and D) and three power monitors. First, Phone A 
and B are used for ground truth measurements; Phone A measures 
power consumption while running a target sensing app with 
existing apps. Phone B measures power while running existing 
apps only. The ground truth is calculated by subtracting power 
measurement of Phone A from that of B. For the PowerForecaster 
estimation, we configured Phone C to run existing apps and to 
collect sensor and device usage traces. Phone D measures power 
while running the target app only. Global-single(ScenarioID) and 
Global-single-shared(ScenarioID) use the power measured for a 
specific scenario while Global-average uses the average power 
measured across the five scenarios. An experimenter drove the 
cart with the phones and power monitors following each scenario. 
We used a script to run the same apps (web browser, video player, 
email client, and map) at the same timings. 

7.2 Performance Analysis of PowerForecaster 
7.2.1 Accuracy of Net Power Estimation 
Figure 11 shows the power measurement with 3 sensing apps in 5 
scenarios. Compared to the ground-truth, PowerForecaster 
accurately estimates net power increases by sensing apps. Average 
error rate is 6.6%: 5.3% for Accupedo, 6.8% for MyPath, and 
7.7% for ChatMon, indicating that PowerForecaster closely traces 
the power use of the target sensing app. Even for the same app, its 
power consumptions vary across scenarios due to different user 
activities and phone usages. For ChatMon, the ground truth of the 
net power increase ranges from 29 mW to 227 mW. 

The three alternatives show much lower accuracy. The average 
error rate of Global-average is 99% across all scenarios and apps. 
Global-single(Scenario4) shows an average error rate of 116%, 
indicating that it misestimates the app’s power consumption by 
more than double compared to the ground truth. The average error 
rates for Global-single(Scenario2) and Global-single(Scenario3) 
are 59% and 128%, respectively. This indicates that the approach 
itself is likely to be error-prone regardless of the scenario since it 

estimates the power use of a target app based on the power 
measurement for a single specific scenario. Interestingly, even for 
Scenario 4, Global-single(Scenario4) shows high error rates (86% 
for Accupedo). This is because Global-single does not reflect the 
effect of resource sharing with existing app usage. Global-single-
shared(Scenario4) which considers this sharing effect, produces 
an average error rate of 60%. The average error rates for Global-
single-shared(Scenario2) and Global-single-shared(Scenario3) are 
45% and 83%, respectively. Although the error is 0% for 
whichever scenario was chosen for this baseline, the average error 
depends on the differences in behavior modeled in other scenarios. 

We analyze the characteristics for each scenario. For Accupedo, 
Scenario 1 shows the largest net power increase. Its movement 
duration (50 min) is the longest, consuming much power to 
process accelerometer data. However, little sharing effect due to 
short app usage (5 min) makes the largest impact. Scenario 2 is 
the opposite. Scenarios 4 and 5 reveal the resource sharing effect. 
They have the same movement behavior but different app usage 
time, 30 min and 1 min respectively. As a result, scenario 5 shows 
twice net power increase. MyPath shows a similar trend as it has 
accelerometer-based triggering. ChatMon exhibits different trends 
due to different sensing logic and user behavior affecting sensing 
operation. In scenario 1, there is no BT encounter and thus no 
audio processing. Accordingly, it shows the smallest net power 
increase. Scenario 3 has the longest time duration of encounter, 
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Figure 10. Accuracy of net power estimation by PowerForecaster 
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Figure 11. Power measurements with more apps and phones 

60 min., thereby performing sound processing for the entire time. 
Thus, it shows the largest net power increase. Although it has a 
greater encounter time of 20 min compared to Scenario 5, its net 
increase is similar to that of Scenario 5 due to resource sharing. 

7.2.2 Testing with More Apps and Phones 
We show the applicability of PowerForecaster to two more 
commercial pedometer apps, NoomWalk and Pedometer2.0, and a 
more device, Nexus 5. Figure 10(a) shows the results for Scenario 
4. Our system accurately estimates the net power increase; the 
ground truth for NoomWalk and Pedometer2.0 is 9 mW and 103 
mW while the estimations are 11 mW and 105 mW, respectively.   

Next, we investigate the accuracy of PowerForecaster on Nexus 5 
with Android 4.4.4. We built the power model for Nexus 5 and 
developed the PowerForecaster system based on Android 4.4.4. 
We conducted experiments with the three sensing apps: Accupedo, 
MyPath, and ChatMon with Scenario 4, Scenario 1, and Scenario 
2, respectively. Figure 10(b) shows that PowerForecaster provides 
an accurate power estimation even with another phone with a 
different Android version. Average error rates of PowerForecaster 
and Global-single are 6% and 21%, respectively. 

7.2.3 Effect of Emulation Acceleration 
We evaluate the emulation acceleration in terms of time-accuracy 
tradeoff. For parallelism, we use 10, 5, 2, and 1 min segment sizes. 

Parallel execution with idle time skipping: Figure 12 shows that 
the average error rate is still low when applying acceleration; in 
the figure, w/o skip means that only parallel execution is applied 
whereas w/ skip means that parallel execution and idle time 
skipping are all applied. Average error rates are 10.4% and 11.2%, 
respectively. While they are slightly higher than the those without 
acceleration, they are still reasonable. As expected, the segment 
size affects estimation accuracy. Accupedo shows less than or 
about 10% error rate overall, but the other two apps exhibit 
relatively large error rates for the 1-min segment. This is due to 
the characteristics of sensing logic of the apps. We briefly discuss 
the ChatMon case. For ChatMon, there are two conflicting factors 
affecting power estimation by parallel execution: the number of 
BT scans and the delay of sound sensing and processing. With 2-
min intervals, ChatMon performs 30 BT scans for 1 hour. In 
parallel execution, however, the number can vary depending on 
the segment size. ChatMon is executed independently on each 
emulator and performs a BT scan when it starts. While the number 
of scans with 10- and 2-min segment is 30, it increases to 36 and 
60 for 5- and 1-min segment, respectively, increasing the 
estimated power. At the same time, duration for sound processing 
can decrease in some segments, decreasing in estimated power. 
Sound processing is triggered only after ChatMon detects a BT 

encounter. Depending on the scenario, the two factors differently 
contribute to the increase or decrease of estimated power.  

Figure 13 shows the CDF of elapsed time to complete emulation 
of the three sensing apps for all 5 scenarios when applying 2-min 
segments. For many segments, emulation is finished for less than 
20 sec. While about 30% of segments show less than 10 sec of 
emulation time for Accupedo, the time for 70% of segments is less 
than 20 sec for MyPath. ChatMon has similar results to Accupedo. 

Progressive estimation: Figure 14 shows the average error when 
applying 2-min segment parallel execution with idle time skipping. 
The average error quickly decreases within 10 sec for MyPath and 
Accupedo. MyPath shows 9% of error in 20 sec while Accupedo 
does 19%. After 30 sec, the error almost saturates. ChatMon takes 
relatively longer for saturation, i.e., 60 sec. Note that scenario 3 
and 4 of ChatMon show saturation, less than 5% in 12 sec. 
ChatMon’s high average error before saturating is attributed to the 
high error rate in Scenario 1. Its net power increase is very small 
compared to others, 28.9 mW. Thus, even a small difference in 
estimation such as 10 mW, results in a large error. An example of 
such difference is clearly shown in the first 10 sec, where the error 
rate unexpectedly increases as the estimation progresses. This is 
mainly due to ChatMon’s logic which conducts a BT scan for the 
first 10 sec upon startup. Progressive estimation regards the power 
cost of the initial scan as representative of the whole scenario and 
thus overestimates the results compared to the small ground truth. 
We summarize the results for the additional cases introduced in 
Section 7.2.2. When applying 2-min segment parallel execution 
with idle time skipping, our system shows 21% error (2 mW 
difference) for NoomWalk due to its lack of power use and 8% 
error for Pedometer2.0. For Nexus 5, the error rates are 2%, 5%, 
and 3% for Accupedo, MyPath, and ChatMon, respectively. 

7.3 System Overhead 
Mobile-side cost: We examine the mobile-side cost in terms of 
energy overhead and storage size. We omitted network cost since 
the trace upload is done only while the phone is on Wi-Fi and 
charged. We consider two sensor sets, a basic set with GPS, 
accelerometer, and Bluetooth, and a full set with all available 
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Table 4 Mobile-side cost; accelerometer/light/proximity/magnetic 
(delay_fastest), gyroscope(delay_game), GPS/BT/3G/WiFi(1 min.) 

Data Storage 
(MB)   

Avg. power (active 
period power) (mW), 

Expected battery-
life decrease (h) 

Nexus S Nexus 5 Nexus S Nexus 5 
device usage 0.24 < 1 (<1) < 1 (<1) - - 
sensor(basic) 11.1 23 (276) 25 (298) 0.8 0.5 
sensor(full) 34.6 32 (390) 26 (314) 1.1 0.6 

 

sensors. Table 4 shows the results calculated with 1/12 duty cycle, 
which we set from our empirical experience, as shown in Section 
6.2; the expected battery-life decrease is computed assuming 15 
hours of battery-life with the fully charged battery, 1500 mAh and 
2300 mAh for Nexus S and Nexus 5, respectively. The overall 
power costs for both basic and full sensor collection were not 
significant. Even with a full set, the expected lifetime decrement 
on Nexus S is about an hour; while the cost to collect the sensor 
data within a cycle is large 390 mW, the average power is reduced 
to 32 mW due to duty cycling. The cost to collect device usages is 
negligible in terms of both power use and necessary storage. Note 
that one hour overhead occurred only a few times since the trace 
is collected once and used for various different apps. 

Server-side cost: The major operations on the server-side are as 
follows. (1) Prior to a request, the emulator manager stores and 
manages user behavior traces. (2) Upon a request, it initiates 
power emulation on distributed phone emulators with the pre-
segmented traces. (3) It collects the hardware usage statistics from 
the emulators and estimates the power impact. The costs of (1) 
and (3) are not significant. For (1), the network and storage cost is 
not large, as the maximum data size is about 35 MB for a single 
day of a user. For (3), the estimation takes less than one sec. For 
(2), the overhead to run a single emulator instance on our server is 
about 5% of CPU and 400 MB of memory. The major workload 
comes from simply emulating a virtual phone image even without 
foreground apps running; we observed that the extra workload for 
replaying the trace is quite marginal. We discuss the scalability 
issue for a worldwide service of PowerForecaster in Section 9. 

8. REAL DEPLOYMENT EVALUATION 
Experiment setup: We recruited 6 graduate students and 1 
researcher(P1) on campus in Nov. 2014. We provided a Nexus S 
running our trace collector and had them use it as their primary 
phone. They installed their own SIM cards on the phone and the 
apps they usually use. Not to affect their usual phone use and 
corresponding power consumption, we provided another Nexus S 
to collect sensor data at the same time. To ensure the same user 
behaviors and environmental conditions for both phones, we 
taped them up to be carried together. For comprehensive analysis, 
we collected the full sensor data from 8 a.m. to 2 a.m. the next day. 

Each participant was compensated KRW 200,000 (USD 179). The 
experiments were conducted for two weeks. The first week was to 
collect prerequisite information to estimate power impact, 
including sensor traces, device usage traces, hardware usage 
statistics, and battery levels. When the second week started, each 
participant installed one of three sensing apps, Accupedo, MyPath, 
or ChatMon. The second week was to measure the decrease of the 
battery life when the participants used the designated app. For 
ChatMon, we recruited two students from the same project group 
and configured their ChatMons to detect each other. 

User-friendly power impact estimation: For this study, we 
further process netPapp in more user-friendly way. Specifically, we 
convert netPapp to the expected decrease in the battery life (in 
hours) of the user’s phone, by applying the following formula: 

decrease(app) = battery-lifewithout_app – battery-lifewith_app

, 
where capacity is the phone’s full battery capacity and Pwithout_app 
is the average power use of the phone before running the target 
sensing app. netPapp is the net power increase of the app outputted 
by our emulator. For the user-friendly output, our collector logs 
phones’ battery levels to estimate battery-lifewithout_app. We use a 
simple method to calculate battery-lifewithout_app: the reciprocal of 
the battery drain rate (%/h), computed by using the consecutive 
samples of <timestamp, battery level> as in [10][40]. 

Results: Table 5 shows the battery-life decrease of each sensing 
app for the 7 participants. The sensing apps reduced the phones’ 
battery life by 12.1 hours on average. Interestingly, even a 
commercial app, Accupedo reduces battery life by 5.3-14.7 hours. 

We investigate the estimation accuracy. We asked the participants 
to select two days during the first week, each with different IDs, 
on Table 6. Note that it is impossible to measure exact estimation 
accuracy without complete regeneration of a day’s user behavior. 
Instead, we indirectly compare the estimated battery life with 
average battery life during the second week. For each selected day, 
Table 6 shows PowerForecaster’s observed battery life and 
estimated future life, taking the user behavior on that day into the 
input. It also shows the actual second week battery life when the 
user used the sensing app. PowerForecaster estimates battery-life 
decreases with high accuracy even in uncontrolled real-life 
settings, over 90% for 10 cases out of 14. Even for Accupedo, a 
commercial app, accuracies were over 90% for all six cases.  

There are few cases when the estimation was not accurate, e.g., for 
P5 with the trace 5-4. P5 mentioned he did not use the phone as 
usual, nor did he move much since it was a weekend day. P5’s 
battery life was about 20 hours on average during the first week, 
but 33 hours in trace 5-4. This observation leads us to separately 
estimate power behaviors on weekends. We will extend 
PowerForecaster to make progressive classification of user’s daily 
life patterns. 
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Figure 15 End-to-end performance with P4's 4-1 and P7’s 7-3 

 
Figure 16 Expected power behavior of MyPath for P4 

  

Table 5. Summary of real-deployment experiment 

ID Age
2nd-week

sensing app
1st-week avg.
battery life (h)

2nd-week avg.
battery life (h)

Avg. battery
life decrease (h)

P1 37

Accupedo

26.6 21.3 5.3

P2 26 49.6 34.8 14.7

P3 32 30.5 17.5 13.0

P4 32
MyPath

30.2 19.7 10.5

P5 23 19.0 15.3 3.7

P6 33
ChatMon

29.1 16.6 12.5

P7 24 39.3 14.8 24.5  
Table 6. Estimation of battery life 

ID TraceID
Battery
life (h)

Estimated (future)
battery life (h)

2nd-week avg.
battery life (h) / stdev

P1
1-4 24.5 21.1

21.3 / 0.9
1-6 26.2 22.7

P2
2-5 50.0 37.0

34.8 / 2.4
2-7 47.5 35.7

P3
3-4 24.6 17.7

17.5 / 2.9
3-7 22.4 17.2

P4
4-1 33.2 24.1

19.7 / 2.7
4-7 24.8 20.0

P5
5-4 33.6 24.1

15.3 / 2.6
5-5 17.7 15.3

P6
6-1 24.5 15.2

16.6 / 1.9
6-5 45.6 18.1

P7
7-2 41.3 18.0

14.8 / 1.8
7-3 42.7 19.6  

We also examine the estimation accuracy when applying all the 
optimization techniques. For 1/12 duty cycling, we picked out 2-
min data every 24-min from sensor and device usage traces. We 
performed power emulation using the sampled traces with 2-min 
segment parallel execution and idle time skipping. Figure 15 
shows the progressive estimation errors over time with trace 4-1 
and 7-3, compared to the case using the whole trace without any 
acceleration techniques. Notably, with only 1/12 of the trace, 
PowerForecaster shows only 8.5% and 3.4% of errors, 
respectively. This is because the sampled data still represent the 
rest due to the context continuity. For the trace 4-1, our system 
reveals decreasing errors over time, 13% and 10% at 20 and 30 
sec, respectively. For trace 7-3, it saturates to 3% after 5 sec. 

Besides battery-life impact, PowerForecaster also provides in-
depth analysis on future power behavior of sensing apps by using 
contextual information obtained from the sensor trace. Figure 16 
shows the estimated power hotspots that P4 saw prior to use the 
MyPath app depending on the time and the location, respectively. 
While PowerForecaster basically targets end users, it can also be 
used to support developers to estimate battery-life impact of their 
apps in real-life situations. Based on behavior traces collected 
from diverse users, our system can provide the estimated impact 
of their apps over different users before the real deployment. 

9. DISCUSSION 
Daily variation of user behaviors: We focus on providing an 
accurate power impact estimate of a sensing app given users' 
behavioral traces of a specific day. However, it is arguable that the 
estimation for a past specific day can well represent the real power 
impact in the future. We believe that there are both possibilities 
and limitations here. The deployment study result in Section 8 
shows that the estimation accuracy is reasonably good, which 
implies that there are likely to be similar behavioral patterns over 

days. At the same time, there are also cases that exhibit large 
deviation from the estimate depending on users. From the results, 
it might be difficult to provide a single representative estimate of 
power impact based on one-day-long traces in the face of daily 
variations of behaviors. To address the problem, we can consider 
collecting user traces for several days (possibly periodically) and 
making an estimate in a more detailed form, e.g., a reasonable 
range instead of a single value or separate estimates for weekdays 
and weekends. While this can increase the mobile side cost, e.g., 
about an hour or less decrease in daily battery life for several days 
or a week, it might be a useful option for users who do not mind 
collecting traces for a longer period of time. Also, if it is possible, 
it may be able to recognize the behavioral patterns and model the 
user behaviors as studied in [8][13][34]. Such a model may allow 
us to estimate power impact of sensing apps more systematically. 

Scalability: To complete a power forecasting request for a given 
user and a given sensing app, it takes about 30 seconds on average 
with a total of 45 parallel emulator instances running on two 
physical servers of the specifications aforementioned in Section 
7.1. For the cost estimation, we used MyPath and an 18-hour-long 
trace from user P4 (see Section 8) under the optimization settings 
of 1/12 duty cycle and 2-min-long segmentation. To discuss the 
scalability for worldwide deployment, we attempt to estimate the 
volume of cloud infrastructure partly based on publicly available 
data and partly with our reasonable assumptions where no public 
data is available to the best of our knowledge. According to 
Google I/O 2015 [15], there are 50 billion app installations per 
year from 1 billion Android users. We do not know the number of 
sensing app installations out of those; we attempt to assume that 1 
billion ones are for sensing apps. This guess is an aggressively 
high number based on (1) the fact that Google Fit, one of the most 
popular sensing apps, has been cumulatively installed about 5 
million times (0.01% of 50 billion), and (2) the prospect that 
sensing apps will proliferate in the near future. Given these 
numbers, we expect about 2.8 million sensing app installations 
per day. The number of daily power forecasting requests may be 
higher than this; users may want to compare a few similar apps 
before installing one. We use 3 for a reasonable number of 
comparisons; it produces a total of 4 power forecasting requests, 
giving 11.2 million power forecasting requests per day worldwide. 
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Given the resources to complete a single request shown above, 
this worldwide workload could be handled by 7800 physical 
servers3. This would be reasonably practical, based on the existing 
server volume of today’s commercial cloud such as 1 million 
servers in Microsoft datacenters4. 

Our estimation has a number of limitations. The true computing 
powers of a commercial cloud server are unknown. It lacks the 
notion of diurnal workload fluctuations, which may act adversely 
to the estimated server volume. The ever-growing popularity of 
sensing apps would also aggravate the scalability issue. On the 
contrary, a number of advanced strategies may be able to resolve 
the scalability issues. For example, (1) we can make the kernel 
ticks advance faster by modifying the Android emulator’s kernel 
timer; it will further shorten the time to complete the processing 
of a given trace. (2) An emulator instance may be able to 
accommodate multiple target apps; this would be able to save a 
significant amount of computing resources as the major workload 
comes from emulating a phone image, rather than from running 
apps on top of it. (3) The service provider may predict an 
installation of a particular sensing app based on popularity or user 
profiles; making an estimation in advance by temporary surplus 
cloud resources would distribute the server-side peak loads. 

Power estimation of advanced techniques for sensing apps: For 
power estimation of sensing apps, we currently focus on their 
repetitive sensing and subsequent data processing controlled by 
built-in logics. However, some apps could offload their heavy 
computation logics on the server to save energy [47][48]. To 
address such apps, it is required to track their network usage and 
estimate the corresponding power cost. We will extend our system 
to support power estimation of sensing apps’ network usage. As in 
Section 3.4, a possible method would be to track network-relevant 
factors on a user’s phone and reproduce them in the emulator [36]. 
Besides the cloud offloading, low power processors have been 
used for energy-efficient sensor data processing. Our system can 
be extended to handle such advanced architectures by building 
power models for low power processors and tracking their usages.  

Privacy: To benefit from PowerForecaster, users are required to 
upload their sensor and device usage data into the cloud, which 
naturally raises privacy concerns. Optimistically, such concerns 
may be mitigated if a system provides sufficient utility [26]. Many 
users already upload their privacy-sensitive data such as location 
and photos to the cloud for better management and accessibility. 
However, to be conservative, privacy is a very subjective and 
sensitive issue [18]. To relieve the concern, our system will adopt 
proper solutions, e.g., allowing users to control the data type and 
granularity to upload as well as data collection period. 

10. RELATED WORK 
Continuous sensing apps and energy optimization: Recently, 
lots of continuous sensing apps have been proposed in a research 
domain [30][32][37][52]. In-depth exploration can be found in 
[25]. While much effort has been put toward developing an 
accurate recognition logic, they also adopt diverse optimization 
techniques to save battery. Also, many works propose common 
platforms for mobile sensing apps and system support for energy-
efficient context sensing [5][11][19][20][21][22][29][31][46]. 

Power profiling and modeling: Power profiles and models are 
important baselines for energy optimization in mobile systems. 
                                                                 
3 2 servers × 0.5 min. × 5.6e+6 requests = 5.6e+6 server•min. = 3888 server•day.  
4 http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx  

There have been extensive efforts to build accurate models for the 
power consumption of mobile apps and phone H/W [6][7][36] 
[42][43][55][56][57], on which the power model that we adopt 
for accurate power estimation is built. Similar to our emulation-
based approach, WattsOn provides a tool to emulate apps’ power 
use in development environments to support app developers [36]. 
Unlike our work, it targets interactive foreground apps and thus 
focuses on power emulation for display, CPU, and network. We, 
however, address the power impact of background sensing apps. 

Energy diagnosis of running apps: Several works address 
energy diagnosis problems such as abnormal battery drain due to 
bugs and misconfigured apps [4][33][40][44]. They help users 
find the causes of undesirable battery drain and fix them. We 
complement these works with the expected power impact of 
continuous sensing apps before installing them, helping users 
make informed decision in advance. 

Human battery interaction: Literatures on human-battery 
interaction for mobile users examined battery-charging behavior 
[9][49], user perception of battery interface [10][49], and change 
of user behavior by battery awareness [3]. However, since they 
mostly focus on conventional mobile apps, they did not address 
issues and concerns related to continuous sensing apps. As an 
early attempt, our previous study reported users’ concerns about 
running continuous sensing apps [35]. Their different battery 
drain depending on user behavior could embarrass users due to 
disparities between users’ anticipation of the near-future battery 
status and the actual outcome. It proposed a novel tool to provide 
user behavior-dependent battery drain information while running 
sensing apps, and showed its effectiveness. Unlike this work, 
PowerForecaster focuses on providing power impact of sensing 
apps at pre-installation time and thereby helps users make better 
informed decision in advance. 

Mobile app testing: Recently, there have been research efforts to 
develop autonomous testing frameworks for mobile apps using 
mobile emulators [16][50][27]. They use a monkey tool to 
automate the execution of mobile apps by generating streams of 
user interface events and analyze runtime properties such as app 
crashes and page contents systematically on the emulator. Our 
system differs from those in two aspects. First, for the execution 
of sensing apps, we replay sensor data streams and sensor status, 
which are the major input of sensing apps. Second, we emulate 
the power state of sensor devices for the power impact estimation. 

11. CONCLUSION 
In this paper, we present PowerForecaster, a system that provides 
users with personalized power impact of continuous sensing apps 
prior to installation. We show that individual user behavior is a 
key to understand power impact of continuous sensing apps. We 
developed a novel user behavior-aware power emulator estimating 
power use by sensing apps based on user’s real behavioral traces. 
We implemented and extensively evaluated the PowerForecaster 
prototype in terms of accuracy, speed, and system overhead. 
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