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Abstract—In this paper, we present BMQ-Processor, a high performance border-crossing event detection framework for large-

scale monitoring applications. A border monitoring query (BMQ) is useful for border-crossing event detection in many monitoring 

applications. It monitors the values of data streams and reports them only when data streams cross the borders of its range. 

BMQ-Processor efficiently handles a large number of border crossing events over a high volume of data streams. It develops 

and operates over a stateful query index, achieving a high level of scalability over continuous data updates. Also, it utilizes the 

locality embedded in data streams and greatly accelerates successive BMQ evaluations. We present data structures and 

algorithms to support one-dimensional as well as multi-dimensional BMQs. We show that the semantics of border monitoring 

can be extended toward more advanced ones and build region transition monitoring as a sample case. Lastly, we demonstrate 

excellent processing performance and low storage cost of BMQ-Processor through extensive analysis and experiments. 

Index Terms—Database semantics, Indexing methods, Mobile environment, Query processing, Sensor network. 
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1 INTRODUCTION

ecent advances in mobile computing and embedded 
device technologies open up new opportunities for 
various types of advanced monitoring applications, 

e.g., location-aware [36][46], context-aware [6][18], envi-
ronmental [45] and financial [2][15] monitoring applica-
tions. An important feature of such applications lies in 
situation-awareness; the applications continuously moni-
tor and identify if situations or conditions of interest oc-
cur. Services are automatically triggered upon the detec-
tion of the registered conditions, e.g., an air conditioner is 
automatically turned on if the temperature of an office is 
higher than 28 °C. Much research on active databases and 
event-based systems has been performed to support such 
event detection and task automation [11][20][21][26][32] 
[50][56][58]. The event detection is done through conti-
nuous monitoring of numerous data streams generated 
from various sensors, GPSs, or agents that are widely 
deployed throughout physical or virtual (computing) 
environments. Often, such monitoring applications are 
large-scale, spanning a number of people and devices 
over a wide geographic area. An efficient event detection 
framework is necessary to effectively support large-scale 
monitoring applications. 

An important class of events in large-scale monitoring 
applications is the border-crossing event (BCE). A BCE is 

intuitively represented as a data stream crossing the bor-
ders of a user-specified interest range. Note that this se-
mantics is different from that of the commonly used 
range filtering which reports all data matching to a speci-
fied range condition [2][46][32]. BCE processing is moti-
vated by two observations. First, for many monitoring 
applications, it is sufficient to report to users only the 
triggering and stopping events of a user-specified range 
condition, rather than to report all matching data. Second, 
the events are frequently accompanied by actions beyond 
monitoring itself. They are compelling to users who want 
the appropriate actions to be automatically triggered or 
stopped. (See example scenarios in Section 3) Recently, the 
border-crossing concept has been also recognized as an 
important way to detect events in the field of sensor net-
works [1][31][56][65], and will be essential to enable 
emerging action-oriented actuator networks [42][55] 
coupled with sensor networks to operate automatically. 

In this paper, we present BMQ-Processor, a high per-
formance border-crossing event (BCE) detection frame-
work for large-scale monitoring applications. A high per-
formance framework is important for large-scale monitor-
ing applications, especially in the emerging sensor-rich 
mobile and pervasive environments; it should handle a 
high volume of data streams continuously arriving from a 
number of sources. In addition, individual users issue 
different requests, personalized to their own needs, re-
sulting in numerous user requests. Furthermore, they 
expect real-time responses and are not tolerant of stale 
events and delayed responses. To develop the framework, 
we take note of the practical importance of BCEs, espe-
cially the massive processing of BCEs, and characterize 
query semantics, namely Border Monitoring Query 
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(BMQ). A BMQ specifies a set of BCEs in relation to an 
interest range in a data-centric manner.  

Our study is the first attempt to develop a high-
performance BMQ-Processor which can handle a large 
number of BCEs over numerous high-rate data streams. 
DSMSs (Data Stream Management Systems) [2][14][15] 
[44][48] have recently been receiving a lot of attention, 
focusing on generic system-level abstractions and per-
formance optimizations for stream-based monitoring ap-
plications. However, event detection was not the main 
concern in this context and has not been studied exten-
sively. The focus of DSMSs was on supporting continuous 
queries, i.e., the extension of relational query language for 
continuous execution. The semantics of BMQ is different 
from the existing continuous range query, namely the Re-
gion Monitoring Query (RMQ) [2][4][15][25][44][46], which 
reports all data matching a specified query range. 

Event processing has been an important issue for a 
long time in many areas, including active databases, 
event-based systems, sensor networks, etc. Most notably, 
active databases [10][11][12][21][22][23][24][30][50][59] and 
event-based systems [7][16][26][32][33][58][64] have 
evolved for diverse application domains, e.g., logistics, 
surveillance and facility management, business to busi-
ness integration, healthcare. In the course of these efforts, 
the ECA model has been established. The ECA-based sys-
tems are powerful in expressing and processing compo-
site events, thereby enabling applications to be equipped 
with active capabilities [9]. Reflecting these efforts, the 
concept of the trigger was implemented in most of the 
commercial DBMSs [29]. 

Event-based systems are expressive enough to specify 
BCEs. However, they are still premature to support large-
scale system environments. As mentioned, such systems 
should be able to effectively handle a massive amount of 
events, requiring a highly scalable processing framework. 
The trigger mechanisms in DBMSs are limited in scale 
with regards to supporting large-scale applications; only 
a few triggers per table are allowed [2][29]. To improve the 
performance of event processing, there have been various 
efforts, e.g., predicate indexing [27][28][32], Rete algorithm 
[19], lazy evaluation of composite events[33], sub-graph 
merging [17], selection mode support [12]. The techniques 
worked good enough to efficiently detect events and eva-
luate conditions in their respective target environments. 
However, in developing the techniques, the number of regis-
tered events as well as the input rates have not been as-
sumed to be very high, e.g., compared to those for data 
stream processing [20][35]. The input rates would increase 
significantly in the upcoming mobile and pervasive envi-
ronments [6][36][45][46]. Numerous high-rate sensors, GPSs, 
or agents will be increasingly deployed in surrounding 
spaces or even on the Internet. BMQ-Processor targets such 
an emerging environment with numerous data streams of 
potentially high data rates and a large number of queries 
specified on them. 

To address these challenges, BMQ-Processor develops 
a shared and incremental processing mechanism. For 
shared processing, BMQ-Processor adopts a query index-
ing approach, thereby achieving a high level of scalability. 

Once BMQ-Processor is built on registered queries, only 
relevant queries are quickly searched for upon an incom-
ing data. The main innovation of BMQ-Processor com-
pared to previous approaches is that BMQ-Processor de-
velops and operates over a stateful index. Existing query 
indices are stateless and optimized only for one-time 
searching. However, for data stream processing, it is ex-
tremely important to optimize the index for consecutive 
searching since the query index is repeatedly searched as 
data continuously arrives. The proposed BMQ-Processor 
holds the state of the last evaluation. It is structured so 
that, upon a new data input, the evaluation is efficiently 
done by starting the operation from the last state. 

For incremental processing, BMQ-Processor utilizes 
the locality of data streams. Data updates usually exhibit 
gradual changes more often than abrupt ones. (See Ap-
pendix A for the study of locality in data streams.) Thus, 
in many cases, the matching query set for a data update 
will be equal to or overlap much with that for the pre-
vious update. To fully utilize this fact, BMQ-Processor 
calculates the difference of matching queries in advance 
and accordingly partitions a domain space. Upon data 
arrival, evaluation can be quickly done by simply travers-
ing a small number of the partitioned segments without 
any complicated computation. 

BMQ-Processor has two important features: excellent 
processing performance and low storage cost. As men-
tioned before, the shared and incremental processing 
enables BMQ-Processor to achieve remarkable processing 
performance. It is also superior in storage cost, storing 
only the difference of matching queries which consumes a 
small size of memory space. Note that such low storage 
cost is essential in large-scale stream processing where 
only in-memory algorithms are practical. Compared to 
the straightforward approach based on state-of-the-art 
RMQ evaluation mechanisms, BMQ-Processor achieves 
much better processing performance and storage cost.  

Our research can be understood as a step to bridge and 
combine two independently evolved research efforts, i.e., 
data stream processing and event processing. We believe 
that they well complement each other to meet semantic and 
processing requirements of emerging monitoring applica-
tions. An interesting research can be found on this line in 
EStream [20][35], which envisioned the necessity of com-
bining the two domains ahead. EStream is designed to 
detect composite events from data streams by sequential-
ly connecting a data stream processing engine with an 
event-based system. Thereby, it combines the complex 
query processing capability of stream processing engines 
with the composite event expression and detection capa-
bility of event-based systems. Similarly, BMQ-processor 
extracts a meaningful pattern of data, i.e., border crossing, 
as important events from high-rate data streams, and fur-
ther elaborates on performance issues. Using these works 
as a basis, we believe research on stream processing can 
be extended to defining and processing various events. 
On the other hand, research on event processing can be 
enriched by defining new event semantics on data 
streams and designing high performance processing 
techniques. 
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The contribution of this paper is summarized as fol-
lows. We develop BMQ-Processor which evaluates a large 
number of BMQs in a shared and incremental manner, 
thereby achieving excellent processing performance and 
low storage cost. Based on the main idea, we design a 
one-dimensional as well as a multi-dimensional BMQ-
Processor to support various monitoring applications. In 
addition, we show that the semantics of border monitor-
ing can be further extended toward more advanced ones 
and investigate region transition monitoring as a sample 
case. 

This paper is organized as follows. Section 2 discusses 
related work. Section 3 introduces border monitoring sce-
narios and discusses the BCE and BMQ semantics. The 
one-dimensional BMQ processing is presented in Section 
4, and the multi-dimensional version is presented in Sec-
tion 5. Section 6 introduces the region transition monitor-
ing and discusses its semantics and processing mechan-
ism. Section 7 presents experimental results. Finally, we 
conclude the paper in Section 8. 

2     RELATED WORK 

Our high-performance BMQ-Processor for large-scale moni-
toring applications is related to diverse research domains, i.e., 
active databases, event-based systems, publish/subscribe 
systems, data stream processing, and sensor networks. We 
review the many important contributions in these areas and 
compare them to our work. We discuss the differences be-
tween related works and ours in terms of system inputs, 
event/query semantics, and processing performance. 
 
2.1 Active Databases 

Throughout the 80's and 90's, extensive researches were per-
formed to enable active capability in object-oriented, object-
relational, and relational DBMSs [9]. The active features al-
low users to automate tasks and reduce or eliminate their 
interventions, e.g., alerts, integrity constraint checking, view 
maintenance, access control. As an underlying model for 
many active databases (e.g., HiPAC [10], Snoop [11][12], 
SAMOS [21][22], COMPOSE [23], Ode [24], Ariel [30], Star-
burst [59]), the ECA (Event-Condition-Action) model was 
conceptualized, elaborated, and widely used [50]. Based on 
the ECA paradigm, a large amount of academic research 
activities were performed, and many prototype systems 
were developed. A number of event specification languages 
were proposed along with their semantics and detection 
algorithms [50]. They well categorize events into primitive 
and composite events, and then define powerful sets of 
composition operators such as AND, OR, SEQ, NOT, Aperi-
odic, and Periodic. As a result of these efforts, trigger me-
chanisms were implemented in most commercial DBMSs 
[9][29].  

Active database systems target a different system envi-
ronment from the proposed BMQ-Processor. First, as system 
inputs, active databases mainly consider database or transac-
tion events such as insert, delete, and update operations. 
Also, the trigger mechanisms in commercial DBMSs will 
hardly be used in the emerging large-scale monitoring appli-
cations due to their lack of scalability [2][9][29]. On the con-

trary, the proposed BMQ-Processor focuses on the detection 
of a number of BCEs over numerous data streams, e.g., loca-
tion data, sensor readings. These data streams are often con-
tinuous and voluminous, requiring a high-performance 
processing framework. 

To improve the performance of processing multiple ECA 
rules, several mechanisms have been proposed [19][27][28] 
[50]. Most representatively, the Interval Skip List [27] and 
Interval Tree [28] develop a predicate indexing approach, i.e., 
building indices on multiple range conditions, which is 
somewhat similar to our approach. The condition predicate 
considered in these works retrieves all events whose 
attribute value falls in a given range, i.e., the RMQ concept 
described in Section 1. Due to the semantic difference, these 
indices are generally not suitable for BMQ processing. The 
performance benefit of BMQ-Processor is demonstrated in 
the experiment section. 
 
2.2 Event-based Systems 

Starting from active databases, event-based systems (e.g., 
IRules [7][58], CompAS [32][33], Ready [26], Cayuga [16], 
SASE [64]) have evolved and been expanded for diverse 
application domains, e.g., logistics, surveillance and facility 
management, enterprise applications, and healthcare. An 
excellent overview on the evolution of active capability to-
ward various event-driven applications can be found in [9]. 
The event-based systems are powerful in expressing and 
detecting diverse user-defined composite events. As primi-
tive events, they usually consider events generated from a 
specific application domain, e.g., online transaction logs 
[7][58], built-in-sensor reporting in a building [32][33] and 
RFID readings in a market [64]. However, the result of a 
complex computation on data streams is not considered as a 
primitive event, which is different from our viewpoint. In 
addition, they need to be further matured for performance to 
effectively handle emerging large-scale environments. 

Based on the ECA paradigm, several complex event spe-
cification languages have been proposed [7][33][64], provid-
ing a rich set of operators to specify the semantics of various 
composite events. They extend the languages developed for 
active databases in terms of filtering capability [7] and win-
dow semantics [64]. The concept of a BCE can be specified 
using these languages. Using CEDL (Composite Event De-
finition Language) by Urban et al. [7][58], a BCE can be 
specified with a SEQ operator and parameter filters. The 
construct *E used in SAMOS [21][22] refers to the first occur-
rence of event E, which resembles the basic concept of a BCE, 
i.e., a single report at a crossing time. Also, the duplicate pa-
rameter for composite event specification in CompAS [33] 
can be used to specify the concept of a BCE. It is used to rec-
ognize the first and last duplicates of events as meaningful 
ones in their example scenarios.  

Several mechanisms for composite event detection, e.g., 
Petri-nets, automata, and event trees or graphs, were origi-
nally proposed in active databases [12][22][24] and further 
enhanced in event-based systems [7][26][33][58][64]. These 
works provide performance improvement for the rather 
general case of composite events, whereas BMQ-Processor 
focuses on the massive processing of BCEs, i.e., a special 
class of events, which are practically important and useful. 
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Event-based systems incorporate several techniques to 
reduce processing and storage overhead for composite event 
detection and condition evaluations [7][12][17][32][33][58]. 
For efficient composite event detection, the concept of para-
meter context was proposed in [12], which restricts the de-
tection of unnecessary instances of composite events by cap-
turing application semantics. The idea of merging common 
sub-graphs among composite events was briefly discussed 
in [17] For efficient condition evaluation, Urban et al. pro-
posed filtering features to reduce the rule-processing load by 
checking conditions on event parameters before rules are 
triggered [7][58]. Also, Hinze et al. improved the efficiency 
of primitive event filtering based on distribution-based pre-
dicate index [32]. They also proposed the efficient filtering of 
composite events through lazy evaluation [33], which avoids 
unnecessary primitive event detections. 

Most of the previous works usually separately treat mul-
tiple composite events [7][12][22][24][26][50][58]. Such a sep-
arate processing of composite events may potentially limit 
the scalability required for massive processing. Processing 
time would significantly increase proportional to the num-
ber of registered events and input rates. Moreover, it easily 
requires considerable storage space to hold intermediary 
states of computation for each registered event, which makes 
in-memory processing difficult. Several researches on shared 
condition evaluation, e.g., predicate indexing [27][28][32], 
and shared composite event detection, e.g., sub-graph merg-
ing [17] can be considered as efforts to address the problem. 
The techniques are not apposite for shared BMQ processing, 
involving the evaluation of range conditions as well as state 
transitions (or compositions) at the same time. While the 
existing shared processing mechanisms handle the condition 
and transition evaluations separately, BMQ-Processor de-
velops and incorporates the data structures that inherently 
enable the simultaneous evaluation of both range conditions 
and state transitions in a shared manner. 

Also, BMQ-Processor significantly improves performance 
by developing an incremental processing technique. The 
incremental processing method is crucial in handling highly 
frequent data updates from a large number of stream 
sources. By considering consecutive pairs of data inputs and 
the locality embedded in the pairs, BMQ-Processor avoids 
the examination of any unnecessary range conditions as well 
as state transitions when state transitions are not expected to 
occur. In addition, a small amount of storage consumption 
in BMQ-Processor facilitates in-memory processing. 

Research activities were also extended toward distributed 
event specification, semantics, and detection [9][41]. Sentinel 
[13] developed a well-designed global event detector, and 
various tools for the ease of specification of events and rules. 
Other works include a distributed event composition and 
detection framework [52] and a CORBA-based event archi-
tecture [43]. 
 
2.3 Data Stream Management Systems 

For the last several years, a significant amount of progress 
has been made in the field of data stream processing [25]. 
Several data stream management systems (DSMS) such as 
NiagaraCQ [15], Aurora [2], TelegraphCQ [14][44], and 
STREAM [4][48] have been developed to enable a number of 

new monitoring applications. They deal with various issues 
such as relational continuous query languages, operator 
scheduling, load shedding, and fault tolerance. 

There have been extensive researches on evaluating a 
large number of continuous range queries. However, they 
concentrate on processing RMQs rather than BMQs. Widely 
adopted mechanisms for shared evaluation of RMQs are 
query indices, namely RMQ-Index. RMQ-Indices have been 
studied for one-dimensional [14][44][63] and two-
dimensional range queries [34][36][53][61][62]. The indices 
can again be classified into a tree-based query index ([14][44] 
for 1-D and [34][53] for 2-D) and a grid-based query index 
([63] for 1-D and [36][61][62] for 2-D). The tree-based indices 
have O(log N) search cost and O(N log N) storage cost, 
where N is the number of registered queries. Compared to 
the tree-based indices, the grid-based query index has better 
search performance for both 1-D and 2-D. However, the 
grid-based indices require much larger storage space since 
queries are redundantly inserted into multiple grids depend-
ing on query ranges. Generally, the grid-based indices for 2-
D consume larger storage space than those for 1-D due to the 
increase in the number of grids. The existing RMQ-Indices 
are limited for BMQ processing. If a RMQ-Index is used for 
BMQ evaluation, costly post-processing is required to sort 
out only the border-crossing data streams. Thus, the perfor-
mance becomes considerably low compared to that of BMQ-
Processor, which is specifically designed for efficient BMQ 
evaluation. 

GPAC [47]and SINA [46] have been proposed for the effi-
cient evaluation of RMQs over location data streams. Similar 
to BMQ-Processor, they compute updates from previously 
reported answers (positive and negative updates). However, 
GPAC is designed for an evaluation of a single outstanding 
continuous query, not for shared processing of multiple que-
ries. To achieve shared processing, SINA performs a spatial 
join between a set of objects and a set of queries. However, 
SINA adopts a grid-based RMQ-index. Thus, as mentioned 
above, it involves costly post-processing to select out only 
the positive and negative updates from the consecutive 
matching sets, and incurs high storage costs. Also, SINA is a 
disk-based algorithm. 
 
2.4 Sensor Networks 

There have been extensive studies on sensor data monitor-
ing and event detection in the field of sensor networks 
[1][3][31][56][60][65]. A typical event detection mechanism 
in sensor networks is to set some thresholds for sensor read-
ings within a query [1][31][65]. It is an intuitive approach 
because an event in many sensor networks highly likely en-
tails salient changes in sensor readings. In contrasting to 
BMQ, their monitoring queries apply typical selection se-
mantics, i.e., RMQs, in SQL, thereby reporting all matching 
sensor data. Also, they mainly studied technical issues to 
enable efficient in-network and distributed processing of 
declarative queries in resource-limited sensor network envi-
ronments, whereas BMQ-Processor is specialized for detect-
ing numerous BCEs over a large number of data streams on 
the server side. A rule-based sensor middleware, FACTS, is 
proposed to enable effective high-level sensor software de-
velopment [56][60]. Using the FACTS programming model, 
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various events on sensor data can be specified as rules. In 
general, we believe that BCEs can also be expressed using 
the FACTS rules. FACTS does not address efficient 
processing of a large number of registered rules. 

 
2.5 Publish/Subscribe Systems 

Publish/subscribe systems support a number of subscribers 
to continuously retrieve the information or events of their 
interest [5][8][51]. Also, information or events, e.g., 
RSS/news feeds, and B2B/B2C XML messages, are generat-
ed over the Internet by a number of publishers. The systems 
develop efficient multicast-based routing and in-network 
event filtering techniques considering distributed network 
performance. 

Most systems provide filtering (e.g., point, range or key-
word filtering) on primitive events and leave the task of 
event composition and detection to applications. Recently, 
PADRES [41] was proposed to enable composite event sub-
scriptions over content-based publish/subscribe systems for 
application to business process and workflow integration. 
We think that the BCE is an important class of events also in 
the context of publish/subscribe systems. It could be poten-
tially adopted to enrich the semantics of the composite 
events for systems like PADRES. BMQ-Processor can well be 
incorporated into those systems and help improve their per-
formance. 

3    BORDER MONITORING QUERY 

Many monitoring applications frequently monitor a large 
number of data streams by specifying the ranges of interests. 
As discussed in Section 1, users are frequently interested in 
the changes in the situations rather than the details of the 
situations. The situation change events are also useful to 
automatically trigger or stop necessary actions. Moreover, 
notifying only on the events rather than all matching data 
saves computation as well as network bandwidth. 

In this section, we define border-crossing events 
(BCEs) and border monitoring queries (BMQs) to specify 
the events. Also, we show its importance and usefulness 
in large-scale monitoring application scenarios. 
 
3.1 Border Monitoring Scenarios 

Scenario 1: Financial Trading 
Consider NASDAQ. Every second, thousands of compa-
nies generate streams of updates such as stock prices, 
volumes, value indices, e.g., Price Earning Ratio (PER), 
and Price Book-value Ratio (PBR). Also, millions of stock 
investors monitor them by registering their own queries. 
Assume that a stock investor wants to do value investing. 
For this, he needs to continuously monitor all underva-
lued stocks whose prices or value indices fall below his 
own threshold value, e.g., PBR < 1. In this situation, it is 
very helpful to the investor if he is notified as soon as the 
data values go above or below a specified border. Based 
on the notifications, he can arrange his system to auto-
matically buy or sell the stocks. 

Coupon

Pet-Care

Send lunch menu to people 
within the nearby region!!

Incoming

Outgoing

 
Fig. 1. Location-based Advertisement 

Scenario 2: Location-based Advertisement  
See Fig. 1. Many stores, like restaurants, cafes, and gas 
stations are willing to advertise lunch menus or send a 
discount coupon to people within nearby rectangle re-
gions for about two hours. Meanwhile, the locations of 
people are updated every 30 seconds. People do not like 
to receive the same advertisement more than once. Thus, 
it is not necessary to locate the people who are already in 
the region. Instead, it is sufficient to quickly identify those 
who are coming into or going out of the specified region. 
Note that there are tens of thousands of stores in a city. 
Many of them would show interest in location-based ad-
vertisement to increase their profits. 

3.2 Border-Crossing Event (BCE) 

To clarify the implication of the BCE and help understand 
our insight, we first discuss the data and events in various 
viewpoints.  

Previous researches on event-based systems and data 
stream management systems (DSMS) have different un-
derstandings of continuously incoming inputs, i.e., as 
data and as events. The subtle difference between them 
comes from that of the two independently developed 
threads of research efforts. DSMSs consider the inputs as 
data tuples [2][15][44][48], whereas event-based systems 
regard them as primitive events [16][26][32][58][64]. For 
example, stock feeds or sensor readings are regarded as 
streams of data tuples in [2][15][44] and as streams of pri-
mitive events in [16][32]. We suspect the reason is that 
they have targeted different types of operations. DSMSs 
mainly deal with relational operators such as join and 
aggregation, where a basic processing unit is a data tuple. 
On the other hand, event-based systems concentrate on 
various logical and temporal compositions of inputs, 
where a unit of composition is a primitive event. 

As a bridge between the two viewpoints, we regard in-
coming inputs as data and meaningful patterns of data, 
e.g., border crossings in this paper, as primitive events. 
As discussed in Section 1, an interesting research is found in 
EStream [9][20][35], taking similar thoughts to complement 
the two different approaches each other. Our insight is that 
people are mostly interested not in raw data (e.g., each 
sensor reading itself), but in meaningful patterns derived 
from the raw data (e.g., border crossing or point of inflec-
tion on sensor readings). Previous scenarios show that 
border crossing is an important and frequently used pat-
tern; whether or not the events crossing the borders of a 
user-specified region have occurred.  
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A border-crossing event (BCE) is defined formally as 
follows. We first define data tuples and data streams. 
 
Definition 1. data tuple and data stream 

• A data tuple is an instance of d(stream_id, value, 
timestamp). 
• A data stream1 is an infinite series of data tuples <d1, 
d2, d3, … > where (di.stream_id = dj.stream_id for all i, j 
≥ 1) AND (dt-1.timestamp < dt.timestamp, where for all 
t > 1) 
  
A BCE is defined on a data stream. It can be classified 

into two different types; (1) an I event representing a data 
stream coming into an interest range and (2) an O event 
representing a data stream going out from the interest 
range. A BCE can be described in the form of (event type, 
stream_id, timestamp). It can contain additional attributes, 
e.g., data values. 

 
Definition 2. A BCE with respect to an interest range r 
Let  s = <d1, d2, d3,…> be a data stream and r, an inter-
est range. Then,  
• tuple i = (I, stream_id, dk.timestamp) is an I event for 
stream s w.r.t. r if there exists k, k > 1, such that (dk-

1.value  ∉ r ) AND (dk.value ∈ r)  
• tuple o = (O, stream_id, dk.timestamp) is an O event 
for stream s w.r.t. r if there exists k, k> 1, such that (dk-

1.value ∈ r) AND (dk.value ∉ r) 
 

As discussed in Section 2.2, a BCE on a data stream can be 
expressed with several composite event specification lan-
guages, e.g., IRules [7][58], CompAS [32][33]. 
 

3.3 Definition of BMQ 

A Border Monitoring Query (BMQ) is a monitoring query 
which collectively detects BCEs over all input data 
streams from a large number of sources. They handle a 
number of sources at the same time in a uniform way. In 
many sensor network and location-based systems, such 
an approach is importantly recognized as a data-centric 
paradigm [3]. Data-centric specification will proliferate as 
large-scale applications tend to be interested in identify-
ing BCEs collectively regarding all data stream sources 
rather than the events for a specific source. 

Given an interest range parameter, two sets of BMQ 
results are defined. RSetBMQ+(t) is the set of I events on 
data streams, and RSetBMQ−(t) is that of O events. They 
are defined through two sets of data tuples as follows. Let 
q(r) be a query with range r and RSet(t) be the set of data 
tuples which are in the range r at an update time t. Simi-
larly, RSet(t–1) represents those contained in the range at 
the update time t–1. 

 
Definition 3. Border Monitoring Query  
• RSetBMQ+(t) = RSet(t) − RSet(t–1)  
• RSetBMQ−(t) = RSet(t–1) − RSet(t) 
 

 

1 A data stream corresponds to a data source. 
 

 Note that the definition above interchangeably used 
two different types of sets, i.e., the two result sets, 
RSetBMQ+(t) and RSetBMQ−(t), are the sets of events, 
whereas the other two sets, RSet(t) and RSet(t–1) are the 
those of data tuples from data streams. A more precise 
definition should include the type conversion of each data 
tuple in the result sets to an event. 

QSet
−
QSet

0
QSet

+

QSet(t)QSet(t–1)

Previous data value (vt-1) Current data value (vt)

Time

 
Fig. 2.  Matching query sets vs. Differential query sets 

4 ONE-DIMENSIONAL BMQ-PROCESSOR 

While a BMQ is effective in specifying BCEs, developing 
an efficient processing method is a big challenge. BMQ-
Processor should handle a large number of such queries, 
monitoring a huge amount of data updates continuously 
arriving from numerous data sources. BMQ-Processor 
employs a shared and incremental processing mechanism 
to effectively deal with such query and data workloads.  

In this section, we explain the key concept of the pro-
posed method. We then present the details of one-
dimensional BMQ processing, followed by an in-depth 
analysis on their processing and storage costs. 
 

� Shared processing 
To efficiently process a large number of BMQs and 
achieve a high level of scalability, shared processing of 
BMQs is essential. For this purpose, BMQ-Processor 
builds a query index. Once an index is built on registered 
BMQs, only relevant queries are quickly searched for 
without unnecessary access to irrelevant queries.  

Upon a data tuple’s arrival, BMQ-Processor retrieves 
two sets of relevant queries: (1) QSet+(t), the set of queries 
that match the current data value vt, but do not match the 
previous data value vt-1. (2) QSet

−(t), the set of queries that 
do not match the current data value, but match the pre-
vious data value. We call them differential query sets (see 
Fig. 2.). The differential query sets are defined by two 
matching query sets, QSet(t–1) and QSet(t), i.e., the match-
ing query set of the previous data value vt-1 and that of 
the current value vt, respectively. 
 
Definition 4. Differential query sets 

� QSet+(t)= QSet(t) − QSet(t–1) 
� QSet−(t) = QSet(t–1) − QSet(t) 
 

� Incremental processing 
Evaluating BMQs as well as continuous range queries in 
general is expensive. This is especially so when the evalu-
ation should be performed over data streams where a 
huge volume of data are continuously updated. To tackle 
the challenge, BMQ-Processor develops an incremental 
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processing method and significantly accelerates repeated 
BMQ processing. The key idea is to utilize the locality of 
data streams and develop a stateful query index for in-
cremental evaluation.  

Consecutive updates from a data stream usually show 
gradual changes. (Data may show sudden changes from 
time to time. However, we believe that changes are more 
often gradual especially in the streams of physical data. 
See Appendix A for examples. Locality in sensor data 
streams was also reported in the context of temporal cor-
relation such as stair-wise and linear patterns [54][66].) 
Thus, in many cases, consecutive updates from each 
stream source fall into the regions of many of the same 
queries. For example, the stream [$72, $71, $73, $74] of 
IBM stock price falls into the region of [Q1: $70 < price < 
$75] at every update. We exploit such locality and the 
resulting overlap between matching query sets to facili-
tate successive BMQ evaluations.  BMQ-Processor parti-
tions a domain space into consecutive region segments, 
and pre-computes the differences of the sets of matching 
queries for consecutive segments. It then remembers the 
state of the last evaluation, i.e., the segment where each 
data stream was located at the last evaluation. 

Due to the locality, an incoming data update often falls 
into the same segment as in the last evaluation, requiring 
no further evaluation. Even if it does not, it is most likely 
that the update falls into a nearby segment. In this case, a 
new evaluation is instantly done by simply taking the 
union of pre-computed differences. No intricate computa-
tions are involved in the process other than the union of 
differences. The union is taken over just a small number 
of consecutive segments starting from the last segment. 
This method is also very effective in storage cost, since it 
stores only the differences of queries over successive re-
gions without replication. 
 
4.1 Data Structure 

BMQ-Processor consists of two data structures: a stream 
table and an RS (Region Segment) list (see Fig. 3). The 
stream table maintains a node pointer to the last located 
RS node for each data stream. A data stream is distin-
guished by Stream_ID although data streams simulta-
neously flow into BMQ-Processor from multiple sources. 
The identification is quickly done in O(1) because the 
stream table entries are hashed by Stream_ID. RS list di-
vides a domain space, the range of possible data values into 
region segments. Each region segment of RS list holds 
two delta query sets. Given two consecutive region seg-
ments, the delta query set is the difference of matching 
queries for each segment.  

RS list is defined as follows. Let Q = {Qk} be a set of 
continuous range queries where a query Qk has the  range 
(lk, uk) and let B denote the set of lower and upper bounds 
of the  range of each Qk in Q, i.e., B = {b | b is either lk or uk 
of a Qk ∈ Q}∪{minimum and maximum values of domain 
space}. We denote the elements of the set B with a sub-
script in the increasing order of their values. That is, b0 < 
b1 < … < bm. An RS list is a list of RS nodes, <N1, N2, …, 
Nm>. Each RS node Ni is a tuple (Ri, +DQSeti, −DQSeti). Ri 
is the range of region segment (bi-1, bi), bi ∈ B.  

Q5

Q4

Q3

Q2

Q1

Registered BMQs

{Q1, Q2}

v
t

v
t-1

{Q3}

{Q1}

{Q4}

{Q3} {Q2} {Q4}

{Q5}

{Q5}

v
t

RS list

…

Node pointer

…

IBM

Stream_ID

…

Node pointer

…

IBM

Stream_IDStream Table

N1N1

+DQSeti

–DQSeti

b0 b2 b3 b4b1 b5 b6 b7

N2N2 N3N3 N4N4 N5N5 N6N6 N7N7

b8 b9

N8N8 N9N9

 
 

Fig. 3. Structure of BMQ-Processor 

 
Delta query sets, +DQSet and –DQSet, are defined as 

follows. Let QSeti be the set of queries matching a region 
segment (bi-1, bi), i.e., the set of queries Qk such that lk  ≤ bi-1 
< bi ≤ uk, for the region (lk, uk) of Qk. Then,  
 
Definition 5. Delta query sets, +DQSeti and −DQSeti 

� +DQSeti = QSeti − QSeti−1 
� −DQSeti = QSeti−1 − QSeti 

 
A query Qk is determined as an element of +DQSeti if it 
covers the region segment Ni, but not Ni-1. As the domain 
space is fully partitioned with the query ranges, Qk is the 
query of which the range starts from the lower bound of 
Ni, i.e., Qk ∈ +DQSeti if lk  = bi-1. Likewise, a query Qk be-
longs to −DQSetj if it covers the region segment Nj-1, but 
not Nj. Qk is the query of which the range ends at the low-
er bound of Nj, i.e., Qk ∈ −DQSetj if uk = bj-1. 

In Fig. 3, an RS list is built for five BMQs. Nine RS 
nodes are created. Each node has a range and ±DQSeti. 
For instance, N5 has a range (b4, b5), {} as a +DQSet5, and 
{Q3} as a –DQSet5. 

 
4.2 Query Registration and Deregistration 

A query can be dynamically registered and deregistered 
in BMQ-Processor. Assume that a query Qin whose range 
is (lin, uin) is registered. First, BMQ-Processor locates the 
RS node, Ni which contains lin, i.e., bi–1 ≤ lin < bi. If lin is 
equal to bi–1, Qin is inserted into the +DQSeti of Ni. Other-
wise, Ni is split into two RS nodes: the left node with the 
range of (bi–1, lin) and the right node with the range of (lin, 
bi). The left node has the ±DQSet of Ni, and the right node 
contains Qin in its +DQSet. Second, BMQ-Processor lo-
cates the RS node, Nj which contains uin, i.e., bj–1 ≤ uin < bj. 
If uin is the same as bj–1, Qin is inserted into the –DQSetj of 
Nj. Otherwise, Nj is also split into the two RS nodes: the 
left node with the range of (bj–1, uin) and the right node 
with the range of (uin, bj). The left node has the ±DQSet of 
Nj, and the right node keeps Qin in its –DQSet. 

When a query Qout whose range is (lout, uout) is deregis-
tered, BMQ-Processor first locates the RS node, Ni whose 
lower bound is equal to lout, and removes Qout from the 
+DQSeti. If both +DQSeti and –DQSeti are empty, Ni is 
merged with Ni–1. Second, BMQ-Processor locates the RS 
node, Nj whose lower bound is uout, and removes Qout 
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from –DQSetj. If both +DQSetj and –DQSetj are empty, Nj 
is merged with Nj–1. 
 
4.3 Incremental Processing Algorithm 

BMQ-Processor incrementally derives differential queries 
through linear traversals from a previous matching node 
to a current matching node. The delta queries of the vi-
sited nodes are retrieved and then transformed into the 
differential queries. Due to the locality of data streams, an 
updated data tuple probably remains in the same node. 
Even if it does not, it is highly possible that an updated 
data tuple falls in a nearby node. Therefore, differential 
queries are quickly derived with a small number of node 
visits. 

Given two consecutive data values, vt-1 and vt, let vt-1 
fall in the range of an RS node Nj and vt fall in that of Nh, 
i.e., bj-1 ≤ vt-1 < bj and bh-1 ≤ vt < bh. Two differential query 
sets, QSet+ (t) and QSet− (t) are evaluated while traversing 
from Nj to Nh as shown in Lemma 1.  
 
Lemma 1. 

If j < h,  QSet+(t) = [ h

ji 1+=U +DQSeti] − [ h

ji 1+=U −DQSeti] 
QSet−(t) = [ h

ji 1+=U −DQSeti] − [ h

ji 1+=U +DQSeti] 
If j > h,  QSet+(t) = [ 1+

=
h

jiU −DQSeti] − [ 1+
=
h

jiU +DQSeti] 
              QSet−(t) = [ 1+

=
h

jiU +DQSeti] − [ 1+
=
h

jiU −DQSeti] 
If j = h,  QSet+(t) = QSet−(t)= φ. 

 

Proof. 

By Lemma 2, if j < h, 
QSeth = (QSetj U  [ h

ji 1+=U +DQSeti])− [ h

ji 1+=U −DQSeti] ������ ① 
QSet+(t) = QSet(t) − QSet(t–1) (by definition 4) 

= QSeth − QSetj 
= {(QSetj U  [ h

ji 1+=U +DQSeti]) − [ h

ji 1+=U −DQSeti]} 
− QSetj (by ①) 

     = [ h

ji 1+=U +DQSeti] −  [ h

ji 1+=U −DQSeti] 
QSet−(t) =  QSet(t–1) − QSet(t) (by definition 4) 

= QSetj − QSeth 
       = QSetj −  

{(QSetj U [ h

ji 1+=U +DQSeti])− [ h

ji 1+=U −DQSeti]} (by ①) 
= [ h

ji 1+=U −DQSeti] − [ h

ji 1+=U +DQSeti] 

 (∵ QSetj and [ h

ji 1+=U +DQSeti] are mutually exclusive, 
and [ h

ji 1+=U −DQSeti] ⊂  (QSetj U  [ h

ji 1+=U +DQSeti])) 
∴ The given formula is correct when j < h. 
 
The given formula can be proved when j > h as above.  
The given formula is trivial when j = h.  
End of proof 

 

Lemma 2. 

Let Qk, 1 ≤ k, be a query with selection region (lk, uk). Let 
QSeti be the set of queries matching a region segment (bi-1, 
bi), i.e., the set of queries Qk such that lk  ≤ bi-1 < bi ≤ uk, for 
the region (lk, uk) of Qk. Then,  
QSeth =  

(QSetj U  [ h

ji 1+=U +DQSeti]) −  [ h

ji 1+=U −DQSeti], if j < h  
(QSetj U  [ 1+

=
h

jiU −DQSeti]) −  [ 1+
=
h

jiU +DQSeti], if j > h 
QSetj, if j = h 

 

Proof. 

Consider the case of  j < h.  
By induction, 
1) If h = j + 1, then the given formula becomes 
QSeth = (QSetj U  [ h

ji 1+=U +DQSeti])− [ h

ji 1+=U −DQSeti] 
QSeth = (QSetj U  [+DQSetj+1])− [−DQSetj+1]              
QSeth = (QSetj − [−DQSetj+1]) U  [+DQSetj+1] 

(∵−DQSetj+1 and +DQSetj+1 are mutually exclusive) 
          = (QSetj − [QSetj − QSetj+1]) U  [QSetj+1 − QSetj]  

(by definition 5) 
= [QSetj I  QSetj+1] U  [QSetj+1− QSetj] 
= [QSetj+1 I  QSetj] U  [ C

jj QSetQSet I1+ ] 
= QSetj+1 I  [ C

jj QSetQSet U ] = QSetj+1 = QSeth 
∴ if h = j + 1 then the given formula is correct. 

 
2) Let us assume that the given formula is true when h = k 
(for k ≥ j + 1), then  
QSetk = (QSetj U  [ k

ji 1+=U +DQSeti])− [ k

ji 1+=U −DQSeti] 
QSetk+1 = (QSetk U  [+DQSetk+1])− [−DQSetk+1] (by definition 

5) = (QSetj U  [ k

ji 1+=U +DQSeti] 
− [ k

ji 1+=U −DQSeti]U [+DQSetk+1]) −  [−DQSetk+1] 
= (QSetj U  [ k

ji 1+=U +DQSeti]U [+DQSetk+1]) 
− [ k

ji 1+=U −DQSeti] −  [−DQSetk+1] 
= QSetj U  [ 1

1

+
+=

k

jiU +DQSeti]− [ 1

1

+
+=

k

jiU −DQSeti] 
∴ The given formula is correct when h = k + 1 if it is cor-
rect when h = k. 
∴ The given formula is correct when j < h by 1) and 2). 
 
The case with j > h can be similarly proved as above.  
The case with j = h is trivial. 
End of proof 

 
4.4 Analysis of Processing and Storage Costs 

The processing cost of BMQ-Processor can be represented 
as the total number of retrieved delta queries. The aver-
age number of retrieved delta queries U is determined by 
two factors. First, U is proportional to the average distance 
between two consecutive data values. As the distance in-
creases, more RS node visits are required to locate a new 
matching node, thereby increasing the number of re-
trieved delta queries. We define Fluctuation Level (FL) as 
the average distance normalized with respect to the do-
main size. 

sizeDomain 

1

1sizeDomain 

distance Average 2

1

×
−

−
==
∑
=

−

M

XX

FL

M

i

ii

 

 (Xi is ith data value and M is the total number of tuples) 
 
Second, U is proportional to the average density of delta 

queries in an RS list. As the density increases, more delta 
queries are retrieved even with the same FL. The average 
density of delta queries in an RS list can be approximated 
as (2 × Nq / Domain size), where Nq is the number of 
BMQs. It is because each query ID is inserted only twice 
into an RS list. Thus, the average processing cost of BMQ-
Processor can be formulated as Θ(2 × Nq × FL). 

The storage cost of BMQ-Processor is decided by the 
sizes of an RS list and a stream table. The size of the RS 
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list is Θ(2Nq) since each query is inserted once into 
+DQSet and −DQSet, respectively. The size of the stream 
table is proportional to the number of input data sources, 
Nd. Consequently, the total storage cost of BMQ-Processor 
is Θ(2Nq + Nd). 

5 MULTI-DIMENSIONAL BMQ-PROCESSOR 

For many applications, BMQ processing is also required 
for multi-dimensional data. For example, location-based 
services need to query and process two-dimensional or 
even three-dimensional data. Many sensor networks are 
composed of multi-functional sensors, which generate 
multi-attribute sensing values, e.g., both temperature and 
humidity.  

We design multi-dimensional BMQ-Processor by ex-
tending one-dimensional BMQ-Processor. N-dimensional 
BMQ-Processor stores delta query information in N dif-
ferent RS lists. Each RS list contains borders and delta 
queries for each dimension. Upon data arrival, all RS lists 
are quickly searched in order to obtain differential query 
sets per dimension. To identify a final result, we develop 
an efficient cross-check algorithm, which validates que-
ries in differential query sets per dimension. 

Our solution approach is advantageous in several 
ways. First, it has significantly low storage cost. As in the 
one-dimensional case, a query is not repeatedly saved in 
multiple N-dimensional regions, but only twice for each 
dimension, i.e., 2N times total. Note that in other existing 
approaches such as a grid-based index, a query is repeat-
edly saved in multiple grids. Second, it has a high 
processing performance. Our analysis shows that the 
processing algorithm requires only NN )1( −  times of 
processing time for one-dimensional BMQ-Processor. For 
example, two-dimensional processor takes only 2 times 
as much processing time as the one-dimensional proces-
sor does. Finally, while multi-dimensional BMQ-
Processor is advantageous in its performance and storage 
cost, it is also simple in its data structures and processing 
algorithms. We believe that simplicity is an important 
feature especially from a practical point of view; it can be 
easily implemented or incorporated in many different 
systems.  

In the rest of this section, we present two-dimensional 
BMQ-Processor for the ease of explanation. 

 
5.1 Data Structure 

Two-dimensional BMQ-Processor consists of following 
data structures: two RS lists (an RS-X list and RS-Y list), a 
stream table, and a query table. Fig. 4 shows an example 
of the processor with three registered queries. The RS-X 
list is a list of region segments that together comprise the 
range of the X-dimension, <RS-X1, RS-X2, …, RS-Xn>. 
Each region segment RS-Xi maintains lower and upper 
bounds of the region and ±DQSet for the X-dimension. 
The RS-Y list maintains the information for a Y-dimension 
similar to the RS-X list.  

In the two-dimensional case, each entry of the stream 
table has two pointers, Px and Py, pointing RS-Xi which 
contains the current X-dimension value of the stream, and 

RS-Yi which contains the current Y-dimension value of 
the stream. Also, the current data value is saved for the 
next processing operation. The stream table entry is up-
dated upon an arrival of a new data tuple for each data 
stream. The query table, which is hashed with query ID, 
saves the borders of queries; it is required for the cross-
check algorithm. 
 
5.2 Query Registration and Deregistration 

Two-dimensional BMQ-Processor also supports dynamic 
query registration and deregistration. Upon a query regis-
tration and deregistration, an X-dimension predicate and 
Y-dimension predicate of a query are separately 
processed. Consider a query Qn, whose range is (xl, xu, yl, 
yu). When registering Qn to the processor, an X-dimension 
predicate, (xl, xu), is registered to the RS-X list and an Y-
dimension predicate, (yl, yu), is registered to the RS-Y list. 
It is done by the one-dimensional query registration me-
thod. Also, Qn is added to the query table. Deregistration 
of Qn is similarly processed. 
 
5.3 Processing Algorithm 

Upon an arrival of a data value, two-dimensional BMQ-
Processor computes QSet+ and QSet−. Fig. 5 shows overall 
flow of the processing algorithm. The first step of the al-
gorithm is to calculate differential query sets for each di-
mension: ±XQSet and ±YQSet. This is simply done by 
applying one-dimensional incremental processing algo-
rithm to the RS-X list and RS-Y list. 

(vX3, vY3)

(vX2, vY2)

(vX1, vY1)

V

RS-Y4

RS-Y5

RS-Y2

PY

RS-X5s3

RS-X3s2

RS-X2s1

PXStreamID

(vX3, vY3)

(vX2, vY2)

(vX1, vY1)

V

RS-Y4

RS-Y5

RS-Y2

PY

RS-X5s3

RS-X3s2

RS-X2s1

PXStreamID

Stream Table

bY7

{Q1} {Q2}

{Q1}

{Q3}

{Q3} {Q2}

Q1

Q2

Q3

RS-X List

RS-Y List

RS-X5 RS-X6 RS-X7RS-X4RS-X3RS-X2

{} {}

-DQSet-Xi {} {}

{}

RS-Y2

RS-Y3

RS-Y4

RS-Y5

RS-Y6

RS-Y7

+DQSet-Yi-DQSet-Yi

{Q1}

{Q2}

{Q3}

{}

{}

{}

{}

{}

{}

{Q1}

{Q3}

{Q2}

+DQSet-Xi

{}

bX0 bX1 bX2 bX3 bX4 bX5 bX7

bY1

bY2

bY3

bY4

bY5

bY6

bX6

RS-X1

{}

{}

{} {} RS-Y1
bY0

v(s1)

v(s2)

v1(s3)

v3(s3)

v2(s3)

(bX4, bX5, bY3, bY5)

(bX2, bX6, bY2, bY6)

(bX1, bX3, bY1, bY4)

Range

Q3

Q2

Q1

QueryID

(bX4, bX5, bY3, bY5)

(bX2, bX6, bY2, bY6)

(bX1, bX3, bY1, bY4)

Range

Q3

Q2

Q1

QueryID

Query Table

Fig. 4. Two-dimensional BMQ-Processor 
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Fig. 5. Flow of a processing algorithm 

 /* Cross-check algorithm to validate queries in ±XQSet and ±YQSet */ 
/* Input : stream si’s data tuple with value of (vXc, vYc)              */ 
 
/* Initialize the result sets */ 
±XBMQSet= {} and ±YBMQSet = {}; 
 
/* Validate ±XQSet through cross-check with Y-dimension */ 
For each element Qi of +XQSet 
    Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table 
    If(Qi_yl <vYc< Qi_yh)  +XBMQSet � Qi 
 
Obtain si’s previous data value, (vXp, vYp), using the stream table 
For each element Qi of –XQSet 
    Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table 
    If(Qi_yl <vYp< Qi_yh)  -XBMQSet � Qi 
 
/* Validate ±YQSet through cross-check with X-dimension */ 
Cross-check queries in ±YQSet with X-dimension using above method; 
 
/* Output : ±XBMQSet and ±YBMQSet */ 
  

Fig. 6. Cross-check algorithm 

The second step is to validate if crossing of either the 
X- or Y-dimensional border really results in crossing of a 
two-dimensional border. We developed an efficient cross-
check algorithm described in Fig. 6. The algorithm ex-
amines the borders of the unchecked dimensions of the 
queries in per-dimension differential query sets. 

A cross-check method for +XQSet (+YQSet) is different 
from that for –XQSet (–YQSet). For a query in +XQSet, it 
is checked if a newly arrived data value is located be-
tween the Y-dimension borders of the query. On the other 
hand, for a query in –XQSet, it is checked if the previous 
value of the stream was located between the Y-dimension 
borders. Through the cross-check, the verified result BMQ 
sets, ±XBMQSet and ±YBMQSet, are obtained. Finally, 
QSet+ is calculated as a union of +XBMQSet and 
+YBMQSet. QSet− is also calculated similarly. 

 
5.4 Analysis of Processing and Storage Costs 

The processing performance of multi-dimensional BMQ-
Processor is determined by the cost of RS node visits and 
the cost of the cross-check. The total number of RS node 
visits on multiple RS lists is decided by the sum of projec-
tions of distance vector on each dimension. Under the 
assumption that the average distance is same as one-
dimensional case, the number of RS node visits becomes 

d  times as many as that of one-dimensional BMQ-
Processor in maximum, where d is the number of dimen-
sions. In the cross-check, d–1 times of comparison are per-
formed for queries in per-dimension differential query 
sets, since predicates for all other dimensions should be 
checked. Therefore, the required processing cost is 

dd )1( −  times as much as that of one-dimensional BMQ-
Processor, thereby being O( FLNdd q ××− 2)1( ), where Nq 
is the number of BMQs and FL is multi-dimensional fluc-
tuation level (see details in Appendix B). 

The storage consumption is decided by the sizes of RS 
lists, a stream table and a query table. Since there is an RS 
list per dimension and the stream table has an RS node 
pointer per dimension, the storage size for the RS lists 
and the stream table is d times as large as that of one- di-
mensional BMQ-Processor. Additionally, multi-
dimensional BMQ-Processor maintains a query table, thus 
the storage cost of multi-dimensional BMQ-Processor is 

Θ(d(2Nq + Nd) + Nq), where Nd is the number of input data 
sources. 

6 REGION TRANSITION MONITORING 

The semantics of border monitoring is also important as it 
forms the basis for various, more complex and advanced 
monitoring. As a sample case of such monitoring, we de-
velop region transition monitoring. The focus of the exten-
sion lies in monitoring a pair of consecutive border cross-
ings beyond an individual crossing. Specifically, it is mo-
nitored whether the consecutive border crossings occur or 
not within a given time. This type of monitoring is practi-
cally important because it represents transition or stay of a 
stream associated with a region. We first describe region 
transition monitoring with a service scenario, and then 
extend BMQ-Processor to support it.  
 
6.1 Example Scenario 

In a city, there are a plenty of parking garages. For users’ 
convenience, each parking garage tries to run an ad-
vanced toll system. The system waives tolls for the cars 
which stay in the parking lot only for a short time. Some 
cars come into the garage and go out, e.g., within three 
minutes. Also, it re-validates formerly paid tolls for the 
cars which have paid their tolls and temporarily left the 
garage. Some may come back shortly, e.g., in three mi-
nutes, and would like to re-enter the garage but without 
paying tolls again. For these purposes, it is necessary to 
monitor the occurrence of paired border-crossing events, 
i.e., the transition of cars associated with the parking lot. 

On the other hand, the system charges tolls for the cars 
which come into the garage and stay for more than a giv-
en time. Also, it invalidates formerly paid tolls for the 
cars which left the garage and stay outside for more than 
a given time. For these purposes, it is necessary to moni-
tor the non-occurrence of paired border-crossing events, 
i.e., the stay of cars associated with the parking garage. 
 
6.2 Definition of RTMQ 

To facilitate the region transition monitoring, we define a 
Region Transition Monitoring Query (RTMQ). An RTMQ 
is represented as RTMQ(r, t), where 
� r is a region of interest 
� t is a time constraint 
 
Given r and t, an RTMQ specifies four types of region 
transition events (RTEs) for all input data streams. The four 
types of RTEs are as following. 

Type Semantics

I ⊳ O Transition such that a stream comes into and then 
goes out of a region r within time t

O ⊳ I Transition such that a stream goes out of and then 
comes into a region r within time t

I ⊳ ¬O Stay such that a stream comes into and then does 
not go out of a region r within time t

O ⊳ ¬I Stay such that a stream goes out of and then does 
not come into a region r within time t

Type Semantics

I ⊳ O Transition such that a stream comes into and then 
goes out of a region r within time t

O ⊳ I Transition such that a stream goes out of and then 
comes into a region r within time t

I ⊳ ¬O Stay such that a stream comes into and then does 
not go out of a region r within time t

O ⊳ ¬I Stay such that a stream goes out of and then does 
not come into a region r within time t

∗ ⊳ means that the right event occurs after the left one. 
∗ ¬ means negation.  
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The two parameters r and t specify filtering conditions: 
(1) r is the interest range for the generation of I and O 
events (2) t constrains the time window, i.e., only I and O 
events within the window t are valid. In addition, an 
equality condition on stream_id is implied, i.e., sequenced 
I and O events should refer to the same stream sources.  

In the context of event-based systems, RTEs can be 
considered as special types of composite events. Specifi-
cally, O⊳I and I⊳O are specified as a binary sequence, i.e., 
a SEQ operator in [11][33][58][64], of I and O events with 
a time window t. O⊳¬I and I⊳¬O can similarly be speci-
fied additionally with negation operators. An RTMQ col-
lectively specifies all RTEs from a large number of input 
streams and is especially useful in many location-based 
applications. 
 
6.3 Approach for Efficient RTMQ Processing 

As in processing BMQs, RTMQ evaluation involves mas-
sive event processing over a large number of data streams. 
Accordingly, we should carefully consider performance 
issues for RTMQ processing. In the following, we present 
our approach and discuss alternative approaches. 

For RTMQ processing, we first need to detect I and O 
events. Then post-processing is required (1) to compose 
only I and O events from the same source and (2) to in-
spect if the matching I and O events satisfy the time con-
straint t. It is more important to efficiently handle the first 
round, i.e., the detection of I and O events, since it direct-
ly operates on the high-rate input data streams. The post-
processing operates on the derived I and O event streams 
with much lower rates. As BMQ-Processor is adept at 
processing the first round, it makes the whole processing 
efficient. 

We develop an efficient algorithm, Transition-Sequence 
(Tran-Seq), for the post-processing, which requires SEQ 
operation along with a time constraint. (The algorithm is 
described in Section 6.4.) Tran-Seq uses sliding widows as 
well as hash tables for fast matching of event streams. In 
this sense, it is similar to the sliding window hash join algo-
rithm, which is recognized as the state-of-the-art for the 
continuous evaluation of equi-join operations [25][37]. 
Given an RTMQ(r, t), the four types of RTEs are 
processed by sharing the same windows and hash tables. 
Also, I and O events from multiple sources share the 
same structures. 

Existing methods for composite event detection can be 
used for the post-processing [11][33][58]. In general, to 
handle aggregated event streams from multiple sources, 
they first de-multiplex the event streams based on 
stream_id. Then, they evaluate the composition of I and O 
events for each stream source along with checking a time 
constraint. Compared to these approaches, the proposed 
one is advantageous in that it processes I and O events 
from multiple sources using the same Tran-Seq.  

Recently, SASE was proposed as an efficient method 
for the detection of composite events from large windows 
[64]. Similar to Tran-Seq, it processes aggregated event 
streams through a single NFA data structure. It also sup-
ports efficient sliding window-based filtering as well as 
equality testing on multi-source event streams. While 

SASE is very efficient and comparable to Tran-Seq, the 
latter is a better choice for the post-processing of RTMQs. 
Using SASE, given an RTMQ(r, t), the four different types 
of RTEs should separately be processed with separate 
data structures, i.e., a separate NFA, sliding window, and 
stack for intermediary results. Our inspection shows that 
SASE requires at most four times more in processing and 
storage costs than the proposed method.  
 
6.4 Processing Algorithm and Cost Analysis 

Fig. 7 shows the processing flow of RTMQ(r, t). At first, I 
and O events with respect to a BMQ with range r are de-
rived using BMQ-Processor. Then, Tran-Seq(t) composes 
them while checking equality on stream_ids and time 
constraint. Importantly, O⊳I and I⊳¬O are derived by 
I⋊O, meaning searching the O window to match an in-
coming I event, and I⊳O and O⊳¬I by I⋉O, searching for 
the I window to match a new O event. Since the two op-
erations are symmetrically processed, we explain only 
I⋉O for conciseness. The I⋉O operation sequentially ex-
ecutes three sub-operations: 1) insert, 2) probe, and 3) 
delete. The probe operation derives I⊳O, and the delete 
extracts O⊳¬I. Fig. 8 shows the details of the operations. 
Note that the probe operation includes the removal of the 
matched event. For example, without 2-3) in Fig. 8, the 
matched I event (I⊳O) would later be included as I⊳¬O. 
It is a wrong result since a stream already transited 
through the range is recognized as a staying stream. 

1)insert

I event
streams

t

O event

streams

raw data 
streams

BMQ-Processor

4)insert

3)delete

6)delete

2)probe

5)probe
region r

Transition-Sequence (Tran-Seq)

O

I

head tail

Pointer

Stream_id 1 2 …

I ⊳ ¬O

I ⊳ O

O⊳ I

O ⊳¬I

LL(O)

HT(O)

 
Fig. 7. Processing flow of RTMQ 

 

Input: an O event (derived f rom BMQ-Processor)
Output: I⊳O and O⊳¬I

Four data structures: LL(I), HT(I), LL(O), HT(O)

(∗ Linked List (LL) and Hash Table(HT) for I and O event streams. 
LL is used for buf fering and sliding events within t.
HT is used for probing events by a stream_id.)

1) insert: 
1-1) Insert the event into the head of  LL(O) with timestamp
1-2) Insert the stream_id of  the event into HT(O) with pointer

2) probe: 
2-1) Probe HT(I) by using the stream_id of  the event

If  (there exist an I event which has the same stream_id) {
2-2)  Output the matched result as I⊳O

2-3)  Delete the matched I event f rom LL(I) and HT(I)
}

3) delete: 

3-1) Identify the O events which exceed the temporal constraint 
by traversing f rom the tail of  LL(O)

3-2) Output the identif ied O events as O⊳¬I
3-3) Delete the identif ied O events f rom LL(O) and HT(O)  

Fig. 8. Detailed operations of I⋉O 
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BMQ f iltering λds x σBMQ = λI + λO = λe

Costs of a 
Tran-Seq

Processing cost  = λI{ insert(I) + probe(O) + delete(I)} 
+ λO{insert(O) + probe(I) + delete(O)}

≃ λe{2 + (tλe/(2⋅|B|) + 2⋅σw) + 2}

Storage cost = Two hash tables and two linked lists 
= 2tλI + 2tλO = 2tλe

(∗ We assume that I and O events show similar 
occurrence f requency since they are symmetric.
Thus, λI ≃ λO≃ λe/2)

Notation Meaning

σBMQ selectivity of  a BMQ

λds arrival rate of  raw data streams

λI arrival rate of  I events

λO arrival rate of  O events

λe arrival rate of  both I and O events

|B| number of hash buckets

σw selectivity factor of I and O window

 
Fig. 9. Analytical costs for a Tran-Seq 

 
The cost of RTMQ processing is determined by BMQ-
Processor and Tran-Seq. Since the costs for BMQ-
Processor are described Section 4.4 and 5.4, we only ana-
lyze the costs for Tran-Seq (see Fig. 9). The processing 
cost for Tran-Seq depends on the rate of I and O events 
and the cost of operations performed upon the arrival of 
an event. First, the rate of the events, λe is represented as 
the multiplication of the rate of raw data streams, λds and 
the selectivity of BMQ, σBMQ. Second, the costs of Tran-
Seq operations are as follows. Upon the arrival of an 
event, insert and delete operations require two accesses2 
(i.e., one access to the linked list and one access to the 
hash table), respectively. An event is inserted into a hash 
bucket in the order of arrivals and deleted in the reverse 
order. The cost of the probe operation depends on both 
the window size, tλe/2 and the number of hash buck-
ets,|B|. When probing the hash table, tλe/(2⋅|B|) tuples 
must be accessed in the worst case, which is the number 
of events in a hash bucket. If there is a matched event, 
corresponding deletions on the linked list and hash table 
follow and require two accesses, i.e., 2⋅σw. Finally, the 
storage cost is decided by the two hash tables and two 
linked lists. 

In addition, we estimate the real costs through an ex-
periment based on the previous parking garage scenario. 
We realistically model and simulate the location updates 
of a million vehicles in a part of Seoul city (i.e., location 
updates every 30 sec). Each garage is modeled as an 
RTMQ with a range of size 30m x 30m and time con-
straint of 3 minutes. Through the experiment, we meas-
ured the three parameters: λds, λe, and σw. They are 33,300 
data/sec, 21 events/sec and 0.5, respectively. We observe 
that the I and O event rate, λe, is significantly reduced 
through BMQ filtering compared to the raw data rate, λds. 
It is trivial to see that processing over low-rate event 
streams is always better than processing over high-rate 
raw data streams. The impact of efficient filtering of 
BMQ-Processor will increase with multiple RTMQs. 
 

2 For concise analysis, we regard the cost of a single operation on LL or 
HT as one access, i.e., the unit of cost, as in [37]. 

The cost of Tran-Seq processing is estimated from the 
above measured values, i.e., λe{2+(tλe/(2⋅|B|)+2⋅σw) + 
2}  = 126 accesses/sec. In the estimation, we set |B| to the 
same number as the window size, i.e., tλe/2 = 1,890.  A 
hash table of this size is more than viable for a typical in-
memory hash table implementation. The cost, i.e., 126 
accesses/sec, is almost negligible compared to the raw 
input data access cost, i.e., λds = 33,300 accesses/sec. 
Through these analyses, we see that our mechanism con-
sisting of BMQ-Processor and Tran-Seq efficiently 
processes RTMQs. 

7 EXPERIMENTS 

In this section, we discuss the results of our performance 
study on BMQ-Processor. The experiment consists of 
three parts: performance study on one-dimensional BMQ 
processing, that on two-dimensional BMQ processing, 
and that on multi-dimensional BMQ processing. We 
compare the processing performance and storage cost of 
BMQ-Processor with a RMQ evaluation-based mechan-
ism, namely DiffRMQ. DiffRMQ derives differential 
query sets in two steps. It first retrieves matching query 
sets for consecutive data values. Then, it performs a set 
difference operation on the resulting matching query sets 
of two consecutive data values and removes the queries 
containing both data values. The state-of-the-art RMQ 
evaluation methods are used for DiffRMQ; CEI [63] and 
IS-list [27] for one-dimensional BMQ processing and CES 
[62] for two-dimensional BMQ processing. The experi-
ments are conducted using a machine equipped with P-III 
1GHz CPU, 512MB RAM, and Linux 2.4. 
 
7.1 Performance of One-dimensional BMQ Processing  

7.1.1 Experimental Setup  

Stream generation.  For this experiment, we consider the 
financial trading scenario described in Section 3.1. Based 
on the observation on Korean stock market (see Appendix 
A), we synthetically generate stock price streams. We 
vary FL from 0.01% to 0.1%, as observed from the traces. 
We use 2000 stream sources as the input, and each stream 
contains 1,000 data tuples. Initial stock prices follow uni-
form distribution. 

 
Query generation. Queries specify the ranges of stock 
prices to be monitored. We distribute the queries by locat-
ing lower bounds of query ranges between 1 and D – 1, 
where D is fixed to 1,000,000, the maximum price of most 
Korean stocks [38]. The lower bounds follow a uniform 
distribution. In practice, the width of a query, W, is usual-
ly larger than FL. We set W to 1 ~ 10 times larger than FL. 
W is also normalized with respect to the domain size. 
Finally, the number of queries, N, varies from 10K to 
100K. 
 
7.1.2 Processing Performance 

In this experiment, we compare the performance of BMQ-
Processor with that of DiffRMQ. For intuitive comparison, 
we first measure the Processing Efficiency (PE) which is 
defined as follows. 



J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 13 

 

(%)100

result teintermedia of size

result final of size

1

1 ×=

∑

∑

=

=
M

i

M

iPE
 

(M is the total number of input data tuples) 
 
In BMQ-Processor, the size of the intermediate result is 

the total number of retrieved delta queries during an 
evaluation. In DiffRMQ, it is the number of the matching 
queries. In both cases, the size of the final result is the 
total number of differential queries after evaluation. We 
then measure the average processing time, which is 
measured as the elapsed time to produce the final result 
per data tuple. We measure the PE and the average 
processing time while varying three parameters: the 
number of queries N, the width of queries W, and the 
fluctuation level FL. 
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Fig. 10. Effect of the number of queries (W=0.1%, FL=0.01%) 
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Fig. 11. Effect of the width of queries (N=100K, FL=0.01%) 
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Fig. 12. Effect of the Fluctuation Level (N=100K, W=0.1%) 
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Fig. 13. Effect of the distribution (N=100K, W=0.1%, FL=0.01%) 

 
First, we vary N from 10K to 100K. W and FL are fixed 

to 0.1% and 0.01%, respectively. Fig. 10 shows the PE and 
the average processing time as a function of N. The PE of 
BMQ-Processor is 100% regardless of the number of que-
ries and much higher than the PE of DiffRMQ. In 
DiffRMQ, consecutive matching query sets are likely to 
much overlap due to the locality in data streams. Thus, 
many irrelevant queries are accessed to obtain only a few 
differential queries. Consequently, the processing time of 
DiffRMQ is significantly longer than that of BMQ-
Processor. The slight increase in the processing time of 
BMQ-Processor mainly comes from the increase in the 
final result size, which tends to grow with the number of 
registered queries. 

Second, we vary W from 0.01% to 0.1%. N and FL are 
fixed to 100K and 0.01%, respectively. Fig. 11 shows the 
results. As the width of the queries increases, the PE of 
DiffRMQ rapidly decreases, whereas that of BMQ-
Processor remains almost 100%. It is because the size of 
the intermediate result of DiffRMQ increases with the 
width of queries. However, that of BMQ-Processor is not 
affected by the width of queries.  The size of final result 
does not change in neither of the cases. Therefore, as the 
width of queries increases, the processing time of 
DiffRMQ increases significantly, but that of BMQ-
Processor remains constant. 

Third, we vary FL from 0.01% to 0.1%. N and W are 
fixed to 100K and 0.1%, respectively. As FL increases, the 
size of the intermediate result of BMQ-Processor increases 
while that of DiffRMQ changes little. The size of the final 
result increases in both cases. Thus, the PE of BMQ-
Processor decreases slowly while that of DiffRMQ in-
creases rapidly as shown in Fig. 12 (a). 

Interestingly, the PE of BMQ-Processor is higher than 
that of DiffRMQ as long as FL is smaller than W. It is be-
cause the average intermediate result size of DiffRMQ is 
2W·N3 while that of BMQ-Processor is 2FL·N. According-
ly, the processing time of BMQ-Processor is smaller than 
that of DiffRMQ if FL is smaller than W. If FL increases 
up to W, the processing time of BMQ-Processor becomes 
slightly larger than that of DiffRMQ due to the increasing 
cost of RS node traversals. However, W is generally larger 
than FL in practical cases. 

To investigate the effect of skewed data and query dis-
 

3 Given a data value, the number of matching queries is W·N in RMQ 
processing method. In DiffRMQ, two sets of matching queries must be 
accessed for previous and current values to perform a set difference op-
eration. 
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tributions, we perform an additional experiment. We use 
a normal distribution to simulate the skewed distribu-
tions of data and queries. The distributions for data and 
queries have the same mean value, i.e., D/2. We generate 
four different combinations of data and query distribu-
tions to evaluate the performance under various situa-
tions. N, W and FL are fixed to 100K, 0.1% and 0.01%, 
respectively. 

The change of the distributions does not affect the PE 
as shown in Fig. 13(a). This means that the ratio of the 
intermediate result size over the final result size is the 
same regardless of the distributions. The PE of BMQ-
Processor remains 100%, which is ten times larger than 
that of DiffRMQ. 

As shown in Fig. 13(b), when either one of the data and 
query distributions is skewed, the processing time 
changes little. Consider the case that only queries are 
skewed. In the regions where the query borders are 
densely located, the processing time for a corresponding 
data value increases. However, it decreases in sparse re-
gions. As a result, the average processing time does not 
change. When only the data distribution is skewed, the 
average processing time is not affected. 

An interesting result is that the average processing 
time is considerably larger when both data and query 
distributions are skewed. In this case, many of the values 
in the streams are located in the region where the query 
borders are densely located. Thus, both the final and in-
termediate result sizes increase, resulting in an increase in 
the processing time. Since the intermediate result size of 
BMQ-Processor is much smaller than that of DiffRMQ, 
BMQ-Processor is more efficient in terms of processing 
time. In conclusion, BMQ-Processor is more robust 
against skewed data and query distributions than 
DiffRMQ. 

 
7.1.3 Storage Cost 

In this experiment, we compare the storage cost of BMQ-
Processor to that of DiffRMQ. We measure the size of the 
memory space used for each processing method. To iden-
tify the effect of N and W on storage cost, we run two 
experiments. In the first experiment, we vary N from 10K 
to 100K and fix W to 0.1%. In the second, we vary W from 
0.01% to 0.1% and fix N to 100K. 

Fig. 14(a) shows the result of the first experiment. 
BMQ-Processor uses much less memory than the two 
DiffRMQs, especially than CEI-based DiffRMQ. In gener-
al, RMQ processing methods store queries redundantly. 
CEI stores a query into multiple grids covered by its 
range. Even a tree-based method, i.e., IS-list, stores a 
query log N times (N is the number of registered queries). 
In contrast, BMQ-Processor stores a query only twice, 
thereby resulting in considerably smaller storage cost. 

Fig. 14(b) shows the storage size as a function of query 
width. The storage cost of CEI-based DiffRMQ increases 
rapidly with query width. In CEI, a query with a wide 
range is repeatedly inserted to the grids overlapping the 
range, resulting in high storage cost. As for IS-list-based 
DiffRMQ, its storage cost is less affected by query width 
as it is a tree-based approach.  BMQ-Processor shows a 

constant storage usage regardless of query width since it 
only stores two delta queries upon each query registra-
tion. 
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(a) Effect of N (W=0.1%)         (b) Effect of W (N=100K) 

Fig. 14. Storage cost 

7.1.4 Scalability with the Number of Data Streams 

We test the scalability of BMQ-Processor as increasing the 
number of data streams, S, from 1K to 128K in log-scale. 
This experiment is important since BMQs monitor a large 
number of data streams in our target application scena-
rios. For the experiment, N, W and FL are fixed to 100K, 
0.1%, and 0.01%, respectively. We measure the storage 
cost and total processing time taken for processing a data 
tuple from each data stream, i.e., S tuples in total.  
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(a) Processing cost                               (b) Storage cost 

Fig. 15. Scalability with the number of data streams 

As shown in Fig. 15(a), total processing time of BMQ-
Processor grows linearly with the number of data streams 
in log-log scale. This linear growth is also shown in the 
DiffRMQs’ cases. It is shown that the total processing 
time of BMQ-Processor is 6.8 times smaller than those of 
DiffRMQs. The time gap does not change with varying 
number of data streams. The significant gap in processing 
times comes from the similar reasons discussed in 7.1.2. 
The result conforms to the observation that the processing 
time additively increases with additional streams to the 
input. It is because data tuples from different data 
streams are separately processed without intervening 
each other. As mentioned, the processing time per tuple 
does not change when N, W, and FL are fixed. Fig. 15(b) 
shows storage costs. The storage consumption of BMQ-
Processor is the lowest, and hardly increases. It is because 
BMQ-Processor only adds a stream_id and a 
node_pointer for a stream source, which requires a neg-
ligible amount of memory space. In contrast, DiffRMQs 
require maintaining previous matching query set per 
stream source. This results in linear increases of the sto-
rage usage as the number of streams increases. 
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7.2 Performance of Two-dimensional BMQ Processing  

7.2.1 Experimental Setup  

Stream generation. For this experiment, we consider the 
location-based advertisement scenario introduced in Section 
3.1. We use Network-based Generator of Moving Objects 
(NGMO[49]) to generate location data streams. The road 
map of Oldenburg, a city in Germany is used for the data 
generation. The map is 15km by 15km in size. To generate 
streams with different FL, we assume that there are two 
kinds of moving objects: fast objects such as vehicles and 
slow objects such as pedestrians. The maximum speed of the 
fast objects is 60km/h and the average is 20km/h. Similarly, 
the slow objects have 12km/h of maximum speed and 
4.3km/h of average speed. The number of the moving ob-
jects, i.e., stream sources, is set to 1,000, and the location up-
date period is 30 sec. We collect 100 location data from each 
stream source.  
 
Query generation. Queries specify advertisement regions, 
which are monitored to identify border-crossings. We as-
sume that all advertisement regions are square. Stores are 
usually located densely in downtown area of a city, and 
hence, a query distribution is likely skewed. Thus, we use a 
normal distribution with the mean value being the center of 
the city. We expect that the number of advertising stores in a 
city is up to several thousands, and vary the number of que-
ries from 0.5K to 5K. Different stores advertise in the regions 
of different sizes. For example, a gas station may send its 
electronic coupons within a several-kilometer region, while a 
restaurant, within a several-hundred-meter region. We vary 
the width of queries from 0.5km to 5km. 

 
7.2.2 Processing Performance 

First, we vary N from 0.5K to 5K. W is fixed to 5km. Fig. 16 
shows the PE and the average processing time as a function 
of the number of queries.  Compared to the one-dimensional 
case, the PE of BMQ-Processor is smaller because the size of 
the intermediate result increases but many of them are not 
included in the final result. However, the PE of BMQ-
Processor is still much higher than that of CES-based 
DiffRMQ. Accordingly, the processing time of BMQ-
Processor is significantly lower than that of CES-based 
DiffRMQ with the same FL. The processing time of CES-
based DiffRMQ drastically increases as the number of que-
ries increases. It is because more matching queries should be 
accessed with more registered queries. The processing time 
of BMQ-Processor also increases slightly. However, the in-
crease is much slower because the number of accessed que-
ries is much smaller than in CES-based DiffRMQ.  We can 
see the effect of FL on the performance of BMQ-Processor in 
Fig. 16 (b). A fast moving object is likely to incur a larger size 
of the intermediate and the final results than a slow moving 
object. As a result, the processing time for a fast moving ob-
ject is larger than that for a slow moving object. The effect 
becomes more apparent as the number of queries increases. 

Second, we vary W from 0.5km to 5km. N is fixed to 5K. 
Fig. 17 shows the PE and the average processing time as a 
function of query width. The overall PE of BMQ-Processor is 
superior to that of CES-based DiffRMQ. Consequently, the 
processing time of BMQ-Processor is much lower than that 

of CES-based DiffRMQ with the same FL.  For BMQ-
Processor, the processing time is almost constant regardless 
of query width. On the other hand, that of CES-based 
DiffRMQ rapidly increases, possibly leading to a critical per-
formance problem. We can also see the effect of the FL on 
the performance of BMQ-Processor in Fig. 17 (b). The 
processing time is larger for a fast moving object as ex-
plained before. 

 
7.2.3 Storage Cost 

We also compare the storage cost of BMQ-Processor with 
that of DiffRMQ. We present the utilized storage size as a 
function of N and W. First, we vary N from 0.5K to 5K and 
fix W to 5km. Second, we vary W from 0.5km to 5km and fix 
N to 5K. 
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Fig. 16. Effect of the number of queries (W=5km) 
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Fig. 17. Effect of the width of queries (N=5K) 
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Fig. 18. Storage cost 

Fig. 18(a) shows the storage size as a function of the 
number of queries. The storage size for CES-based DiffRMQ 
increases from 63.5MB to 203MB. Similar to the case of CEI, a 
query is redundantly stored in multiple grids covered by a 
query region in CES, resulting in significant storage cost. 
However, BMQ-Processor consumes much smaller storage 
space, i.e., less than 1MB since a query is stored only twice 
for each dimension. 

Fig. 18(b) shows the storage size as a function of query 
width. BMQ-Processor consumes almost a constant amount 
of storage space, i.e., about 0.38MB, regardless of the width 
of queries. However, the storage size for CES-based 
DiffRMQ considerably increases with the width of queries. 
With an increase in W, i.e., an increase in a query coverage, 
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the query needs to be stored in more grids of CES, which 
results in high storage consumption. 

In Fig. 18, it is shown that BMQ-Processor consumes at 
most hundred times smaller storage space than CES-based 
DiffRMQ. Also, Fig. 14 shows that it consumes at most ten 
times smaller storage space than CEI-based DiffRMQ. In 
conclusion, BMQ-Processor is very efficient in storage usage 
in both two-dimensional and one-dimensional case. 

 
7.3 Performance of Multi-dimensional BMQ Processing  

7.3.1 Experimental Setup  

This experiment examines the effect of dimensionality on 
the performance of BMQ-Processor. We assume that each 
dimension has the same maximum size, i.e., 105. The FL of 
data streams for each dimension is 0.1%. Queries have the 
same width for every dimension, i.e., 0.1%. We vary the 
number of dimensions from one to nine. The number of 
queries is fixed to 10K. We use uniform distribution for 
data and query generations. 

7.3.2 Processing Performance 

Fig. 19(a) shows the average processing time as a function of 
the number of dimensions, d. The average processing time 
increases very slowly with dimension.  The figure also 
shows estimated processing times for comparison.  From the 
analysis described in Section 5.4, the processing time is  

dd ×− )1( × 
1τ , where 

1τ is the processing time for one-
dimensional case. The estimation has been made using the 
measured average processing time for one dimensional case. 
As shown in the figure, the average processing time grows 
very slowly, compared to the estimated values. It is because 
BMQ-Processor does not have to perform cross-checking 
completely with every dimension. Assume that the X-
dimensional border of a query has been crossed by a recent 
data value. Then, it should be validated if the data value 
really crossed the borders of other dimensions, e.g., y- and z-
dimension, as well. However, once it is found that y-
dimensional border has not been crossed, the inter-
dimensional validation process does not have to continue 
with z-dimension. In conclusion, the proposed BMQ-
Processor scales very well with dimension, and is a practical 
solution for multi-dimensional BMQ processing. 
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(a) Processing performance               (b) Storage cost 

Fig. 19. Effect of the dimensionality 

7.3.3 Storage Cost 

Fig. 19(b) shows the storage size as a function of the number 
of dimensions. Because a separate RS list is used for each 
dimension, the consumed storage size increases linearly to 
the number of dimensions. Even for 9 dimensional case, 
BMQ-Processor consumes less than 7MB of memory space. 

This low storage cost is a great advantage of BMQ-Processor 
as in-memory processing is important for stream processing. 

8 CONCLUSION 

In this paper, we have presented BMQ-Processor, a high-
performance border-crossing event detection framework 
for large-scale monitoring applications. Our study is the 
first attempt to propose BMQ-Processor which handles a 
large number of BCEs over numerous high-rate data 
streams. For this purpose, we develop a novel shared and 
incremental processing mechanism. For shared 
processing, BMQ-Processor adopts a query indexing ap-
proach, thereby achieving a high level of scalability. For 
incremental processing, BMQ-Processor utilizes the locali-
ty of data streams and accordingly develops a stateful 
query index. Thus, successive BMQ evaluations are sig-
nificantly accelerated. Based on the main idea, we design 
a one-dimensional as well as a multi-dimensional BMQ-
Processor to support various monitoring applications. We 
also discuss region transition monitoring as an attempt to 
extend border monitoring semantics to more advanced 
ones. Our extensive experimental study and analysis 
demonstrate excellent processing performance and low 
storage cost of BMQ-Processor; BMQ-Processor outper-
forms the state-of-the-art query index-based evaluation 
mechanisms by orders of magnitude. 
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APPENDIX 

A. Locality of Data Streams 

We expect that data streams change gradually in many 
practical situations. In this appendix, we examine the lo-
cality of data streams with real data traces. (The discus-
sion here does not aim at generalizing the existence of 
locality; such generalization should not be made in haste 
and may not even be possible. However, we think there 
are also many practical cases showing locality.) We first 
analyze two numerical data streams: the stock price of 
Samsung and LG Electronics [38]. Fig. 20 shows their 
prices from April 14th to April 22nd, 2004. As we ex-
pected, the stock prices change gradually. Especially, 
LG’s stock price changes more gradually than Samsung’s. 

In order to quantify the degree of locality of a given 
data stream, we defined Fluctuation Level (FL) in Section 
4.4. Note that the degree of locality is high when differ-
ences between data values are small, and vice versa. That 
is, the degree of locality is inversely proportional to FL.  

In order to identify FL’s dependence on data sources as 
well as the sampling rate, we plot FL for the each data 
source according to the sampling rate. As shown in Fig. 
21, the FL of the LG stock data is smaller than that of 
Samsung’s. Thus, the degree of locality for LG’s stock 
data is higher than that of Samsung’s. More important, 
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the FL decreases as the sampling rate increases in both data 
streams, which means that the degree of locality increases.  
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Fig. 20. Real stock prices             Fig. 21. FL of stock prices 
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Fig. 22. PDF for difference of two consecutive values in stock prices 
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Fig. 23. Real temperature 
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Fig. 24. FL of temperature          Fig. 25. PDF of difference 

Although this is as expected, we note that it has an in-
teresting implication. Usually, increasing the update fre-
quency directly increases the processing load, resulting in 
severe performance problems. However, BMQ-Processor 
does not incur much processing cost even at high data 
rates. It is mainly because the degree of locality increases 
according to the increase in the sampling rate. 

Finally, Fig. 22 shows the probability density function 
(PDF) of value differences between two consecutive data. 
They present the characteristics of locality in detail. Even 
though the shape of distributions is a little bit different 
from each other, they follow a skewed-distribution cen-
tered to zero. As the sampling rate decreases, the distribu-
tion becomes more widely spread to the larger difference 
values. Interestingly, the probability of zero difference, 
i.e., consecutive values are the same, is considerably high. 

We also investigate the sensor data stream, atmospher-
ic temperature data from the University of Washington 
[57]. Fig. 23 shows temperature data during eight days 
from May 6th to May 13th 2004.  We observed the similar 
behavior in temperature data as shown in Fig. 24 and 25. 
 

B.  Performance analysis of BMQ-Processor 

Lemma. The time complexity of d-dimensional processing op-

eration is O( )2( FLNdd q
) 

Proof. 

Let ),,,,( 321 dvvvvv L= be a movement vector from 
previous data value at t-1 to the data value at t. Then, the 
total number of queries retrieved from RS node traversals 
for d dimensions at time t is  
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By Cauchy-Schwarz inequality  
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Thus, the total number of queries retrieved from RS node 

traversals, 
 ∑

=

×
d

i

iq FLN
1

2
 , can be bounded by FLdNq ×2 .  

Since a query retrieved from an RS node traversal should 

be crossed-checked with other (d-1) dimensions, the total 

processing cost is O( FLdNd q ××− 2)1( ), which is equal to 

O( )2( FLNdd q
). 

Cf) Cauchy-Schwarz inequality 

http://planetmath.org/encyclopedia/CauchySchwarzInequality.html 
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