
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

BMQ-Processor: A High-Performance Border-
Crossing Event Detection Framework for

Large-scale Monitoring Applications
Jinwon Lee, Seungwoo Kang, Youngki Lee, SangJeong Lee, and Junehwa Song

Abstract—In this paper, we present BMQ-Processor, a high performance border-crossing event detection framework for large-

scale monitoring applications. A border monitoring query (BMQ) is useful for border-crossing event detection in many monitoring

applications. It monitors the values of data streams and reports them only when data streams cross the borders of its range.

BMQ-Processor efficiently handles a large number of border crossing events over a high volume of data streams. It develops

and operates over a stateful query index, achieving a high level of scalability over continuous data updates. Also, it utilizes the

locality embedded in data streams and greatly accelerates successive BMQ evaluations. We present data structures and

algorithms to support one-dimensional as well as multi-dimensional BMQs. We show that the semantics of border monitoring

can be extended toward more advanced ones and build region transition monitoring as a sample case. Lastly, we demonstrate

excellent processing performance and low storage cost of BMQ-Processor through extensive analysis and experiments.

Index Terms—Database semantics, Indexing methods, Mobile environment, Query processing, Sensor network.

—————————— � ——————————

1 INTRODUCTION

ecent advances in mobile computing and embedded
device technologies open up new opportunities for
various types of advanced monitoring applications,

e.g., location-aware [36][46], context-aware [6][18], envi-
ronmental [45] and financial [2][15] monitoring applica-
tions. An important feature of such applications lies in
situation-awareness; the applications continuously moni-
tor and identify if situations or conditions of interest oc-
cur. Services are automatically triggered upon the detec-
tion of the registered conditions, e.g., an air conditioner is
automatically turned on if the temperature of an office is
higher than 28 °C. Much research on active databases and
event-based systems has been performed to support such
event detection and task automation [11][20][21][26][32]
[50][56][58]. The event detection is done through conti-
nuous monitoring of numerous data streams generated
from various sensors, GPSs, or agents that are widely
deployed throughout physical or virtual (computing)
environments. Often, such monitoring applications are
large-scale, spanning a number of people and devices
over a wide geographic area. An efficient event detection
framework is necessary to effectively support large-scale
monitoring applications.

An important class of events in large-scale monitoring
applications is the border-crossing event (BCE). A BCE is

intuitively represented as a data stream crossing the bor-
ders of a user-specified interest range. Note that this se-
mantics is different from that of the commonly used
range filtering which reports all data matching to a speci-
fied range condition [2][46][32]. BCE processing is moti-
vated by two observations. First, for many monitoring
applications, it is sufficient to report to users only the
triggering and stopping events of a user-specified range
condition, rather than to report all matching data. Second,
the events are frequently accompanied by actions beyond
monitoring itself. They are compelling to users who want
the appropriate actions to be automatically triggered or
stopped. (See example scenarios in Section 3) Recently, the
border-crossing concept has been also recognized as an
important way to detect events in the field of sensor net-
works [1][31][56][65], and will be essential to enable
emerging action-oriented actuator networks [42][55]
coupled with sensor networks to operate automatically.

In this paper, we present BMQ-Processor, a high per-
formance border-crossing event (BCE) detection frame-
work for large-scale monitoring applications. A high per-
formance framework is important for large-scale monitor-
ing applications, especially in the emerging sensor-rich
mobile and pervasive environments; it should handle a
high volume of data streams continuously arriving from a
number of sources. In addition, individual users issue
different requests, personalized to their own needs, re-
sulting in numerous user requests. Furthermore, they
expect real-time responses and are not tolerant of stale
events and delayed responses. To develop the framework,
we take note of the practical importance of BCEs, espe-
cially the massive processing of BCEs, and characterize
query semantics, namely Border Monitoring Query

xxxx-xxxx/0x/$xx.00 © 2007 IEEE

R

————————————————

• The authors are with the Department of Computer Science, KAIST, 373-1
Gusong-dong Yusong-gu Daejon 305-701 Republic of Korea. (telephone:
+82-42-869-3586, e-mail: {jcircle, swkang, youngki, peterlee, junesong}@
nclab.kaist.ac.kr).

• The preliminary version [40] was presented in 7th International Conference
on Mobile Data Management (MDM’06), Nara Japan, May 2006, and re-
ceived the Best Paper Award.

Manuscript received June 16, 2007.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

(BMQ). A BMQ specifies a set of BCEs in relation to an
interest range in a data-centric manner.

Our study is the first attempt to develop a high-
performance BMQ-Processor which can handle a large
number of BCEs over numerous high-rate data streams.
DSMSs (Data Stream Management Systems) [2][14][15]
[44][48] have recently been receiving a lot of attention,
focusing on generic system-level abstractions and per-
formance optimizations for stream-based monitoring ap-
plications. However, event detection was not the main
concern in this context and has not been studied exten-
sively. The focus of DSMSs was on supporting continuous
queries, i.e., the extension of relational query language for
continuous execution. The semantics of BMQ is different
from the existing continuous range query, namely the Re-
gion Monitoring Query (RMQ) [2][4][15][25][44][46], which
reports all data matching a specified query range.

Event processing has been an important issue for a
long time in many areas, including active databases,
event-based systems, sensor networks, etc. Most notably,
active databases [10][11][12][21][22][23][24][30][50][59] and
event-based systems [7][16][26][32][33][58][64] have
evolved for diverse application domains, e.g., logistics,
surveillance and facility management, business to busi-
ness integration, healthcare. In the course of these efforts,
the ECA model has been established. The ECA-based sys-
tems are powerful in expressing and processing compo-
site events, thereby enabling applications to be equipped
with active capabilities [9]. Reflecting these efforts, the
concept of the trigger was implemented in most of the
commercial DBMSs [29].

Event-based systems are expressive enough to specify
BCEs. However, they are still premature to support large-
scale system environments. As mentioned, such systems
should be able to effectively handle a massive amount of
events, requiring a highly scalable processing framework.
The trigger mechanisms in DBMSs are limited in scale
with regards to supporting large-scale applications; only
a few triggers per table are allowed [2][29]. To improve the
performance of event processing, there have been various
efforts, e.g., predicate indexing [27][28][32], Rete algorithm
[19], lazy evaluation of composite events[33], sub-graph
merging [17], selection mode support [12]. The techniques
worked good enough to efficiently detect events and eva-
luate conditions in their respective target environments.
However, in developing the techniques, the number of regis-
tered events as well as the input rates have not been as-
sumed to be very high, e.g., compared to those for data
stream processing [20][35]. The input rates would increase
significantly in the upcoming mobile and pervasive envi-
ronments [6][36][45][46]. Numerous high-rate sensors, GPSs,
or agents will be increasingly deployed in surrounding
spaces or even on the Internet. BMQ-Processor targets such
an emerging environment with numerous data streams of
potentially high data rates and a large number of queries
specified on them.

To address these challenges, BMQ-Processor develops
a shared and incremental processing mechanism. For
shared processing, BMQ-Processor adopts a query index-
ing approach, thereby achieving a high level of scalability.

Once BMQ-Processor is built on registered queries, only
relevant queries are quickly searched for upon an incom-
ing data. The main innovation of BMQ-Processor com-
pared to previous approaches is that BMQ-Processor de-
velops and operates over a stateful index. Existing query
indices are stateless and optimized only for one-time
searching. However, for data stream processing, it is ex-
tremely important to optimize the index for consecutive
searching since the query index is repeatedly searched as
data continuously arrives. The proposed BMQ-Processor
holds the state of the last evaluation. It is structured so
that, upon a new data input, the evaluation is efficiently
done by starting the operation from the last state.

For incremental processing, BMQ-Processor utilizes
the locality of data streams. Data updates usually exhibit
gradual changes more often than abrupt ones. (See Ap-
pendix A for the study of locality in data streams.) Thus,
in many cases, the matching query set for a data update
will be equal to or overlap much with that for the pre-
vious update. To fully utilize this fact, BMQ-Processor
calculates the difference of matching queries in advance
and accordingly partitions a domain space. Upon data
arrival, evaluation can be quickly done by simply travers-
ing a small number of the partitioned segments without
any complicated computation.

BMQ-Processor has two important features: excellent
processing performance and low storage cost. As men-
tioned before, the shared and incremental processing
enables BMQ-Processor to achieve remarkable processing
performance. It is also superior in storage cost, storing
only the difference of matching queries which consumes a
small size of memory space. Note that such low storage
cost is essential in large-scale stream processing where
only in-memory algorithms are practical. Compared to
the straightforward approach based on state-of-the-art
RMQ evaluation mechanisms, BMQ-Processor achieves
much better processing performance and storage cost.

Our research can be understood as a step to bridge and
combine two independently evolved research efforts, i.e.,
data stream processing and event processing. We believe
that they well complement each other to meet semantic and
processing requirements of emerging monitoring applica-
tions. An interesting research can be found on this line in
EStream [20][35], which envisioned the necessity of com-
bining the two domains ahead. EStream is designed to
detect composite events from data streams by sequential-
ly connecting a data stream processing engine with an
event-based system. Thereby, it combines the complex
query processing capability of stream processing engines
with the composite event expression and detection capa-
bility of event-based systems. Similarly, BMQ-processor
extracts a meaningful pattern of data, i.e., border crossing,
as important events from high-rate data streams, and fur-
ther elaborates on performance issues. Using these works
as a basis, we believe research on stream processing can
be extended to defining and processing various events.
On the other hand, research on event processing can be
enriched by defining new event semantics on data
streams and designing high performance processing
techniques.

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 3

The contribution of this paper is summarized as fol-
lows. We develop BMQ-Processor which evaluates a large
number of BMQs in a shared and incremental manner,
thereby achieving excellent processing performance and
low storage cost. Based on the main idea, we design a
one-dimensional as well as a multi-dimensional BMQ-
Processor to support various monitoring applications. In
addition, we show that the semantics of border monitor-
ing can be further extended toward more advanced ones
and investigate region transition monitoring as a sample
case.

This paper is organized as follows. Section 2 discusses
related work. Section 3 introduces border monitoring sce-
narios and discusses the BCE and BMQ semantics. The
one-dimensional BMQ processing is presented in Section
4, and the multi-dimensional version is presented in Sec-
tion 5. Section 6 introduces the region transition monitor-
ing and discusses its semantics and processing mechan-
ism. Section 7 presents experimental results. Finally, we
conclude the paper in Section 8.

2 RELATED WORK

Our high-performance BMQ-Processor for large-scale moni-
toring applications is related to diverse research domains, i.e.,
active databases, event-based systems, publish/subscribe
systems, data stream processing, and sensor networks. We
review the many important contributions in these areas and
compare them to our work. We discuss the differences be-
tween related works and ours in terms of system inputs,
event/query semantics, and processing performance.

2.1 Active Databases

Throughout the 80's and 90's, extensive researches were per-
formed to enable active capability in object-oriented, object-
relational, and relational DBMSs [9]. The active features al-
low users to automate tasks and reduce or eliminate their
interventions, e.g., alerts, integrity constraint checking, view
maintenance, access control. As an underlying model for
many active databases (e.g., HiPAC [10], Snoop [11][12],
SAMOS [21][22], COMPOSE [23], Ode [24], Ariel [30], Star-
burst [59]), the ECA (Event-Condition-Action) model was
conceptualized, elaborated, and widely used [50]. Based on
the ECA paradigm, a large amount of academic research
activities were performed, and many prototype systems
were developed. A number of event specification languages
were proposed along with their semantics and detection
algorithms [50]. They well categorize events into primitive
and composite events, and then define powerful sets of
composition operators such as AND, OR, SEQ, NOT, Aperi-
odic, and Periodic. As a result of these efforts, trigger me-
chanisms were implemented in most commercial DBMSs
[9][29].

Active database systems target a different system envi-
ronment from the proposed BMQ-Processor. First, as system
inputs, active databases mainly consider database or transac-
tion events such as insert, delete, and update operations.
Also, the trigger mechanisms in commercial DBMSs will
hardly be used in the emerging large-scale monitoring appli-
cations due to their lack of scalability [2][9][29]. On the con-

trary, the proposed BMQ-Processor focuses on the detection
of a number of BCEs over numerous data streams, e.g., loca-
tion data, sensor readings. These data streams are often con-
tinuous and voluminous, requiring a high-performance
processing framework.

To improve the performance of processing multiple ECA
rules, several mechanisms have been proposed [19][27][28]
[50]. Most representatively, the Interval Skip List [27] and
Interval Tree [28] develop a predicate indexing approach, i.e.,
building indices on multiple range conditions, which is
somewhat similar to our approach. The condition predicate
considered in these works retrieves all events whose
attribute value falls in a given range, i.e., the RMQ concept
described in Section 1. Due to the semantic difference, these
indices are generally not suitable for BMQ processing. The
performance benefit of BMQ-Processor is demonstrated in
the experiment section.

2.2 Event-based Systems

Starting from active databases, event-based systems (e.g.,
IRules [7][58], CompAS [32][33], Ready [26], Cayuga [16],
SASE [64]) have evolved and been expanded for diverse
application domains, e.g., logistics, surveillance and facility
management, enterprise applications, and healthcare. An
excellent overview on the evolution of active capability to-
ward various event-driven applications can be found in [9].
The event-based systems are powerful in expressing and
detecting diverse user-defined composite events. As primi-
tive events, they usually consider events generated from a
specific application domain, e.g., online transaction logs
[7][58], built-in-sensor reporting in a building [32][33] and
RFID readings in a market [64]. However, the result of a
complex computation on data streams is not considered as a
primitive event, which is different from our viewpoint. In
addition, they need to be further matured for performance to
effectively handle emerging large-scale environments.

Based on the ECA paradigm, several complex event spe-
cification languages have been proposed [7][33][64], provid-
ing a rich set of operators to specify the semantics of various
composite events. They extend the languages developed for
active databases in terms of filtering capability [7] and win-
dow semantics [64]. The concept of a BCE can be specified
using these languages. Using CEDL (Composite Event De-
finition Language) by Urban et al. [7][58], a BCE can be
specified with a SEQ operator and parameter filters. The
construct *E used in SAMOS [21][22] refers to the first occur-
rence of event E, which resembles the basic concept of a BCE,
i.e., a single report at a crossing time. Also, the duplicate pa-
rameter for composite event specification in CompAS [33]
can be used to specify the concept of a BCE. It is used to rec-
ognize the first and last duplicates of events as meaningful
ones in their example scenarios.

Several mechanisms for composite event detection, e.g.,
Petri-nets, automata, and event trees or graphs, were origi-
nally proposed in active databases [12][22][24] and further
enhanced in event-based systems [7][26][33][58][64]. These
works provide performance improvement for the rather
general case of composite events, whereas BMQ-Processor
focuses on the massive processing of BCEs, i.e., a special
class of events, which are practically important and useful.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Event-based systems incorporate several techniques to
reduce processing and storage overhead for composite event
detection and condition evaluations [7][12][17][32][33][58].
For efficient composite event detection, the concept of para-
meter context was proposed in [12], which restricts the de-
tection of unnecessary instances of composite events by cap-
turing application semantics. The idea of merging common
sub-graphs among composite events was briefly discussed
in [17] For efficient condition evaluation, Urban et al. pro-
posed filtering features to reduce the rule-processing load by
checking conditions on event parameters before rules are
triggered [7][58]. Also, Hinze et al. improved the efficiency
of primitive event filtering based on distribution-based pre-
dicate index [32]. They also proposed the efficient filtering of
composite events through lazy evaluation [33], which avoids
unnecessary primitive event detections.

Most of the previous works usually separately treat mul-
tiple composite events [7][12][22][24][26][50][58]. Such a sep-
arate processing of composite events may potentially limit
the scalability required for massive processing. Processing
time would significantly increase proportional to the num-
ber of registered events and input rates. Moreover, it easily
requires considerable storage space to hold intermediary
states of computation for each registered event, which makes
in-memory processing difficult. Several researches on shared
condition evaluation, e.g., predicate indexing [27][28][32],
and shared composite event detection, e.g., sub-graph merg-
ing [17] can be considered as efforts to address the problem.
The techniques are not apposite for shared BMQ processing,
involving the evaluation of range conditions as well as state
transitions (or compositions) at the same time. While the
existing shared processing mechanisms handle the condition
and transition evaluations separately, BMQ-Processor de-
velops and incorporates the data structures that inherently
enable the simultaneous evaluation of both range conditions
and state transitions in a shared manner.

Also, BMQ-Processor significantly improves performance
by developing an incremental processing technique. The
incremental processing method is crucial in handling highly
frequent data updates from a large number of stream
sources. By considering consecutive pairs of data inputs and
the locality embedded in the pairs, BMQ-Processor avoids
the examination of any unnecessary range conditions as well
as state transitions when state transitions are not expected to
occur. In addition, a small amount of storage consumption
in BMQ-Processor facilitates in-memory processing.

Research activities were also extended toward distributed
event specification, semantics, and detection [9][41]. Sentinel
[13] developed a well-designed global event detector, and
various tools for the ease of specification of events and rules.
Other works include a distributed event composition and
detection framework [52] and a CORBA-based event archi-
tecture [43].

2.3 Data Stream Management Systems

For the last several years, a significant amount of progress
has been made in the field of data stream processing [25].
Several data stream management systems (DSMS) such as
NiagaraCQ [15], Aurora [2], TelegraphCQ [14][44], and
STREAM [4][48] have been developed to enable a number of

new monitoring applications. They deal with various issues
such as relational continuous query languages, operator
scheduling, load shedding, and fault tolerance.

There have been extensive researches on evaluating a
large number of continuous range queries. However, they
concentrate on processing RMQs rather than BMQs. Widely
adopted mechanisms for shared evaluation of RMQs are
query indices, namely RMQ-Index. RMQ-Indices have been
studied for one-dimensional [14][44][63] and two-
dimensional range queries [34][36][53][61][62]. The indices
can again be classified into a tree-based query index ([14][44]
for 1-D and [34][53] for 2-D) and a grid-based query index
([63] for 1-D and [36][61][62] for 2-D). The tree-based indices
have O(log N) search cost and O(N log N) storage cost,
where N is the number of registered queries. Compared to
the tree-based indices, the grid-based query index has better
search performance for both 1-D and 2-D. However, the
grid-based indices require much larger storage space since
queries are redundantly inserted into multiple grids depend-
ing on query ranges. Generally, the grid-based indices for 2-
D consume larger storage space than those for 1-D due to the
increase in the number of grids. The existing RMQ-Indices
are limited for BMQ processing. If a RMQ-Index is used for
BMQ evaluation, costly post-processing is required to sort
out only the border-crossing data streams. Thus, the perfor-
mance becomes considerably low compared to that of BMQ-
Processor, which is specifically designed for efficient BMQ
evaluation.

GPAC [47]and SINA [46] have been proposed for the effi-
cient evaluation of RMQs over location data streams. Similar
to BMQ-Processor, they compute updates from previously
reported answers (positive and negative updates). However,
GPAC is designed for an evaluation of a single outstanding
continuous query, not for shared processing of multiple que-
ries. To achieve shared processing, SINA performs a spatial
join between a set of objects and a set of queries. However,
SINA adopts a grid-based RMQ-index. Thus, as mentioned
above, it involves costly post-processing to select out only
the positive and negative updates from the consecutive
matching sets, and incurs high storage costs. Also, SINA is a
disk-based algorithm.

2.4 Sensor Networks

There have been extensive studies on sensor data monitor-
ing and event detection in the field of sensor networks
[1][3][31][56][60][65]. A typical event detection mechanism
in sensor networks is to set some thresholds for sensor read-
ings within a query [1][31][65]. It is an intuitive approach
because an event in many sensor networks highly likely en-
tails salient changes in sensor readings. In contrasting to
BMQ, their monitoring queries apply typical selection se-
mantics, i.e., RMQs, in SQL, thereby reporting all matching
sensor data. Also, they mainly studied technical issues to
enable efficient in-network and distributed processing of
declarative queries in resource-limited sensor network envi-
ronments, whereas BMQ-Processor is specialized for detect-
ing numerous BCEs over a large number of data streams on
the server side. A rule-based sensor middleware, FACTS, is
proposed to enable effective high-level sensor software de-
velopment [56][60]. Using the FACTS programming model,

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 5

various events on sensor data can be specified as rules. In
general, we believe that BCEs can also be expressed using
the FACTS rules. FACTS does not address efficient
processing of a large number of registered rules.

2.5 Publish/Subscribe Systems

Publish/subscribe systems support a number of subscribers
to continuously retrieve the information or events of their
interest [5][8][51]. Also, information or events, e.g.,
RSS/news feeds, and B2B/B2C XML messages, are generat-
ed over the Internet by a number of publishers. The systems
develop efficient multicast-based routing and in-network
event filtering techniques considering distributed network
performance.

Most systems provide filtering (e.g., point, range or key-
word filtering) on primitive events and leave the task of
event composition and detection to applications. Recently,
PADRES [41] was proposed to enable composite event sub-
scriptions over content-based publish/subscribe systems for
application to business process and workflow integration.
We think that the BCE is an important class of events also in
the context of publish/subscribe systems. It could be poten-
tially adopted to enrich the semantics of the composite
events for systems like PADRES. BMQ-Processor can well be
incorporated into those systems and help improve their per-
formance.

3 BORDER MONITORING QUERY

Many monitoring applications frequently monitor a large
number of data streams by specifying the ranges of interests.
As discussed in Section 1, users are frequently interested in
the changes in the situations rather than the details of the
situations. The situation change events are also useful to
automatically trigger or stop necessary actions. Moreover,
notifying only on the events rather than all matching data
saves computation as well as network bandwidth.

In this section, we define border-crossing events
(BCEs) and border monitoring queries (BMQs) to specify
the events. Also, we show its importance and usefulness
in large-scale monitoring application scenarios.

3.1 Border Monitoring Scenarios

Scenario 1: Financial Trading
Consider NASDAQ. Every second, thousands of compa-
nies generate streams of updates such as stock prices,
volumes, value indices, e.g., Price Earning Ratio (PER),
and Price Book-value Ratio (PBR). Also, millions of stock
investors monitor them by registering their own queries.
Assume that a stock investor wants to do value investing.
For this, he needs to continuously monitor all underva-
lued stocks whose prices or value indices fall below his
own threshold value, e.g., PBR < 1. In this situation, it is
very helpful to the investor if he is notified as soon as the
data values go above or below a specified border. Based
on the notifications, he can arrange his system to auto-
matically buy or sell the stocks.

Coupon

Pet-Care

Send lunch menu to people
within the nearby region!!

Incoming

Outgoing

Fig. 1. Location-based Advertisement

Scenario 2: Location-based Advertisement
See Fig. 1. Many stores, like restaurants, cafes, and gas
stations are willing to advertise lunch menus or send a
discount coupon to people within nearby rectangle re-
gions for about two hours. Meanwhile, the locations of
people are updated every 30 seconds. People do not like
to receive the same advertisement more than once. Thus,
it is not necessary to locate the people who are already in
the region. Instead, it is sufficient to quickly identify those
who are coming into or going out of the specified region.
Note that there are tens of thousands of stores in a city.
Many of them would show interest in location-based ad-
vertisement to increase their profits.

3.2 Border-Crossing Event (BCE)

To clarify the implication of the BCE and help understand
our insight, we first discuss the data and events in various
viewpoints.

Previous researches on event-based systems and data
stream management systems (DSMS) have different un-
derstandings of continuously incoming inputs, i.e., as
data and as events. The subtle difference between them
comes from that of the two independently developed
threads of research efforts. DSMSs consider the inputs as
data tuples [2][15][44][48], whereas event-based systems
regard them as primitive events [16][26][32][58][64]. For
example, stock feeds or sensor readings are regarded as
streams of data tuples in [2][15][44] and as streams of pri-
mitive events in [16][32]. We suspect the reason is that
they have targeted different types of operations. DSMSs
mainly deal with relational operators such as join and
aggregation, where a basic processing unit is a data tuple.
On the other hand, event-based systems concentrate on
various logical and temporal compositions of inputs,
where a unit of composition is a primitive event.

As a bridge between the two viewpoints, we regard in-
coming inputs as data and meaningful patterns of data,
e.g., border crossings in this paper, as primitive events.
As discussed in Section 1, an interesting research is found in
EStream [9][20][35], taking similar thoughts to complement
the two different approaches each other. Our insight is that
people are mostly interested not in raw data (e.g., each
sensor reading itself), but in meaningful patterns derived
from the raw data (e.g., border crossing or point of inflec-
tion on sensor readings). Previous scenarios show that
border crossing is an important and frequently used pat-
tern; whether or not the events crossing the borders of a
user-specified region have occurred.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

A border-crossing event (BCE) is defined formally as
follows. We first define data tuples and data streams.

Definition 1. data tuple and data stream

• A data tuple is an instance of d(stream_id, value,
timestamp).
• A data stream1 is an infinite series of data tuples <d1,
d2, d3, … > where (di.stream_id = dj.stream_id for all i, j
≥ 1) AND (dt-1.timestamp < dt.timestamp, where for all
t > 1)

A BCE is defined on a data stream. It can be classified

into two different types; (1) an I event representing a data
stream coming into an interest range and (2) an O event
representing a data stream going out from the interest
range. A BCE can be described in the form of (event type,
stream_id, timestamp). It can contain additional attributes,
e.g., data values.

Definition 2. A BCE with respect to an interest range r
Let s = <d1, d2, d3,…> be a data stream and r, an inter-
est range. Then,
• tuple i = (I, stream_id, dk.timestamp) is an I event for
stream s w.r.t. r if there exists k, k > 1, such that (dk-

1.value ∉ r) AND (dk.value ∈ r)
• tuple o = (O, stream_id, dk.timestamp) is an O event
for stream s w.r.t. r if there exists k, k> 1, such that (dk-

1.value ∈ r) AND (dk.value ∉ r)

As discussed in Section 2.2, a BCE on a data stream can be
expressed with several composite event specification lan-
guages, e.g., IRules [7][58], CompAS [32][33].

3.3 Definition of BMQ

A Border Monitoring Query (BMQ) is a monitoring query
which collectively detects BCEs over all input data
streams from a large number of sources. They handle a
number of sources at the same time in a uniform way. In
many sensor network and location-based systems, such
an approach is importantly recognized as a data-centric
paradigm [3]. Data-centric specification will proliferate as
large-scale applications tend to be interested in identify-
ing BCEs collectively regarding all data stream sources
rather than the events for a specific source.

Given an interest range parameter, two sets of BMQ
results are defined. RSetBMQ+(t) is the set of I events on
data streams, and RSetBMQ−(t) is that of O events. They
are defined through two sets of data tuples as follows. Let
q(r) be a query with range r and RSet(t) be the set of data
tuples which are in the range r at an update time t. Simi-
larly, RSet(t–1) represents those contained in the range at
the update time t–1.

Definition 3. Border Monitoring Query
• RSetBMQ+(t) = RSet(t) − RSet(t–1)
• RSetBMQ−(t) = RSet(t–1) − RSet(t)

1 A data stream corresponds to a data source.

 Note that the definition above interchangeably used
two different types of sets, i.e., the two result sets,
RSetBMQ+(t) and RSetBMQ−(t), are the sets of events,
whereas the other two sets, RSet(t) and RSet(t–1) are the
those of data tuples from data streams. A more precise
definition should include the type conversion of each data
tuple in the result sets to an event.

QSet
−
QSet

0
QSet

+

QSet(t)QSet(t–1)

Previous data value (vt-1) Current data value (vt)

Time

Fig. 2. Matching query sets vs. Differential query sets

4 ONE-DIMENSIONAL BMQ-PROCESSOR

While a BMQ is effective in specifying BCEs, developing
an efficient processing method is a big challenge. BMQ-
Processor should handle a large number of such queries,
monitoring a huge amount of data updates continuously
arriving from numerous data sources. BMQ-Processor
employs a shared and incremental processing mechanism
to effectively deal with such query and data workloads.

In this section, we explain the key concept of the pro-
posed method. We then present the details of one-
dimensional BMQ processing, followed by an in-depth
analysis on their processing and storage costs.

� Shared processing
To efficiently process a large number of BMQs and
achieve a high level of scalability, shared processing of
BMQs is essential. For this purpose, BMQ-Processor
builds a query index. Once an index is built on registered
BMQs, only relevant queries are quickly searched for
without unnecessary access to irrelevant queries.

Upon a data tuple’s arrival, BMQ-Processor retrieves
two sets of relevant queries: (1) QSet+(t), the set of queries
that match the current data value vt, but do not match the
previous data value vt-1. (2) QSet

−(t), the set of queries that
do not match the current data value, but match the pre-
vious data value. We call them differential query sets (see
Fig. 2.). The differential query sets are defined by two
matching query sets, QSet(t–1) and QSet(t), i.e., the match-
ing query set of the previous data value vt-1 and that of
the current value vt, respectively.

Definition 4. Differential query sets

� QSet+(t)= QSet(t) − QSet(t–1)
� QSet−(t) = QSet(t–1) − QSet(t)

� Incremental processing
Evaluating BMQs as well as continuous range queries in
general is expensive. This is especially so when the evalu-
ation should be performed over data streams where a
huge volume of data are continuously updated. To tackle
the challenge, BMQ-Processor develops an incremental

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 7

processing method and significantly accelerates repeated
BMQ processing. The key idea is to utilize the locality of
data streams and develop a stateful query index for in-
cremental evaluation.

Consecutive updates from a data stream usually show
gradual changes. (Data may show sudden changes from
time to time. However, we believe that changes are more
often gradual especially in the streams of physical data.
See Appendix A for examples. Locality in sensor data
streams was also reported in the context of temporal cor-
relation such as stair-wise and linear patterns [54][66].)
Thus, in many cases, consecutive updates from each
stream source fall into the regions of many of the same
queries. For example, the stream [$72, $71, $73, $74] of
IBM stock price falls into the region of [Q1: $70 < price <
$75] at every update. We exploit such locality and the
resulting overlap between matching query sets to facili-
tate successive BMQ evaluations. BMQ-Processor parti-
tions a domain space into consecutive region segments,
and pre-computes the differences of the sets of matching
queries for consecutive segments. It then remembers the
state of the last evaluation, i.e., the segment where each
data stream was located at the last evaluation.

Due to the locality, an incoming data update often falls
into the same segment as in the last evaluation, requiring
no further evaluation. Even if it does not, it is most likely
that the update falls into a nearby segment. In this case, a
new evaluation is instantly done by simply taking the
union of pre-computed differences. No intricate computa-
tions are involved in the process other than the union of
differences. The union is taken over just a small number
of consecutive segments starting from the last segment.
This method is also very effective in storage cost, since it
stores only the differences of queries over successive re-
gions without replication.

4.1 Data Structure

BMQ-Processor consists of two data structures: a stream
table and an RS (Region Segment) list (see Fig. 3). The
stream table maintains a node pointer to the last located
RS node for each data stream. A data stream is distin-
guished by Stream_ID although data streams simulta-
neously flow into BMQ-Processor from multiple sources.
The identification is quickly done in O(1) because the
stream table entries are hashed by Stream_ID. RS list di-
vides a domain space, the range of possible data values into
region segments. Each region segment of RS list holds
two delta query sets. Given two consecutive region seg-
ments, the delta query set is the difference of matching
queries for each segment.

RS list is defined as follows. Let Q = {Qk} be a set of
continuous range queries where a query Qk has the range
(lk, uk) and let B denote the set of lower and upper bounds
of the range of each Qk in Q, i.e., B = {b | b is either lk or uk
of a Qk ∈ Q}∪{minimum and maximum values of domain
space}. We denote the elements of the set B with a sub-
script in the increasing order of their values. That is, b0 <
b1 < … < bm. An RS list is a list of RS nodes, <N1, N2, …,
Nm>. Each RS node Ni is a tuple (Ri, +DQSeti, −DQSeti). Ri
is the range of region segment (bi-1, bi), bi ∈ B.

Q5

Q4

Q3

Q2

Q1

Registered BMQs

{Q1, Q2}

v
t

v
t-1

{Q3}

{Q1}

{Q4}

{Q3} {Q2} {Q4}

{Q5}

{Q5}

v
t

RS list

…

Node pointer

…

IBM

Stream_ID

…

Node pointer

…

IBM

Stream_IDStream Table

N1N1

+DQSeti

–DQSeti

b0 b2 b3 b4b1 b5 b6 b7

N2N2 N3N3 N4N4 N5N5 N6N6 N7N7

b8 b9

N8N8 N9N9

Fig. 3. Structure of BMQ-Processor

Delta query sets, +DQSet and –DQSet, are defined as

follows. Let QSeti be the set of queries matching a region
segment (bi-1, bi), i.e., the set of queries Qk such that lk ≤ bi-1
< bi ≤ uk, for the region (lk, uk) of Qk. Then,

Definition 5. Delta query sets, +DQSeti and −DQSeti

� +DQSeti = QSeti − QSeti−1
� −DQSeti = QSeti−1 − QSeti

A query Qk is determined as an element of +DQSeti if it
covers the region segment Ni, but not Ni-1. As the domain
space is fully partitioned with the query ranges, Qk is the
query of which the range starts from the lower bound of
Ni, i.e., Qk ∈ +DQSeti if lk = bi-1. Likewise, a query Qk be-
longs to −DQSetj if it covers the region segment Nj-1, but
not Nj. Qk is the query of which the range ends at the low-
er bound of Nj, i.e., Qk ∈ −DQSetj if uk = bj-1.

In Fig. 3, an RS list is built for five BMQs. Nine RS
nodes are created. Each node has a range and ±DQSeti.
For instance, N5 has a range (b4, b5), {} as a +DQSet5, and
{Q3} as a –DQSet5.

4.2 Query Registration and Deregistration

A query can be dynamically registered and deregistered
in BMQ-Processor. Assume that a query Qin whose range
is (lin, uin) is registered. First, BMQ-Processor locates the
RS node, Ni which contains lin, i.e., bi–1 ≤ lin < bi. If lin is
equal to bi–1, Qin is inserted into the +DQSeti of Ni. Other-
wise, Ni is split into two RS nodes: the left node with the
range of (bi–1, lin) and the right node with the range of (lin,
bi). The left node has the ±DQSet of Ni, and the right node
contains Qin in its +DQSet. Second, BMQ-Processor lo-
cates the RS node, Nj which contains uin, i.e., bj–1 ≤ uin < bj.
If uin is the same as bj–1, Qin is inserted into the –DQSetj of
Nj. Otherwise, Nj is also split into the two RS nodes: the
left node with the range of (bj–1, uin) and the right node
with the range of (uin, bj). The left node has the ±DQSet of
Nj, and the right node keeps Qin in its –DQSet.

When a query Qout whose range is (lout, uout) is deregis-
tered, BMQ-Processor first locates the RS node, Ni whose
lower bound is equal to lout, and removes Qout from the
+DQSeti. If both +DQSeti and –DQSeti are empty, Ni is
merged with Ni–1. Second, BMQ-Processor locates the RS
node, Nj whose lower bound is uout, and removes Qout

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

















from –DQSetj. If both +DQSetj and –DQSetj are empty, Nj
is merged with Nj–1.

4.3 Incremental Processing Algorithm

BMQ-Processor incrementally derives differential queries
through linear traversals from a previous matching node
to a current matching node. The delta queries of the vi-
sited nodes are retrieved and then transformed into the
differential queries. Due to the locality of data streams, an
updated data tuple probably remains in the same node.
Even if it does not, it is highly possible that an updated
data tuple falls in a nearby node. Therefore, differential
queries are quickly derived with a small number of node
visits.

Given two consecutive data values, vt-1 and vt, let vt-1
fall in the range of an RS node Nj and vt fall in that of Nh,
i.e., bj-1 ≤ vt-1 < bj and bh-1 ≤ vt < bh. Two differential query
sets, QSet+ (t) and QSet− (t) are evaluated while traversing
from Nj to Nh as shown in Lemma 1.

Lemma 1.

If j < h, QSet+(t) = [h

ji 1+=U +DQSeti] − [h

ji 1+=U −DQSeti]
QSet−(t) = [h

ji 1+=U −DQSeti] − [h

ji 1+=U +DQSeti]
If j > h, QSet+(t) = [1+

=
h

jiU −DQSeti] − [1+
=
h

jiU +DQSeti]
 QSet−(t) = [1+

=
h

jiU +DQSeti] − [1+
=
h

jiU −DQSeti]
If j = h, QSet+(t) = QSet−(t)= φ.

Proof.

By Lemma 2, if j < h,
QSeth = (QSetj U [h

ji 1+=U +DQSeti])− [h

ji 1+=U −DQSeti] ������ ①
QSet+(t) = QSet(t) − QSet(t–1) (by definition 4)

= QSeth − QSetj
= {(QSetj U [h

ji 1+=U +DQSeti]) − [h

ji 1+=U −DQSeti]}
− QSetj (by ①)

 = [h

ji 1+=U +DQSeti] − [h

ji 1+=U −DQSeti]
QSet−(t) = QSet(t–1) − QSet(t) (by definition 4)

= QSetj − QSeth
 = QSetj −

{(QSetj U [h

ji 1+=U +DQSeti])− [h

ji 1+=U −DQSeti]} (by ①)
= [h

ji 1+=U −DQSeti] − [h

ji 1+=U +DQSeti]

 (∵ QSetj and [h

ji 1+=U +DQSeti] are mutually exclusive,
and [h

ji 1+=U −DQSeti] ⊂ (QSetj U [h

ji 1+=U +DQSeti]))
∴ The given formula is correct when j < h.

The given formula can be proved when j > h as above.
The given formula is trivial when j = h.
End of proof

Lemma 2.

Let Qk, 1 ≤ k, be a query with selection region (lk, uk). Let
QSeti be the set of queries matching a region segment (bi-1,
bi), i.e., the set of queries Qk such that lk ≤ bi-1 < bi ≤ uk, for
the region (lk, uk) of Qk. Then,
QSeth =

(QSetj U [h

ji 1+=U +DQSeti]) − [h

ji 1+=U −DQSeti], if j < h
(QSetj U [1+

=
h

jiU −DQSeti]) − [1+
=
h

jiU +DQSeti], if j > h
QSetj, if j = h

Proof.

Consider the case of j < h.
By induction,
1) If h = j + 1, then the given formula becomes
QSeth = (QSetj U [h

ji 1+=U +DQSeti])− [h

ji 1+=U −DQSeti]
QSeth = (QSetj U [+DQSetj+1])− [−DQSetj+1]
QSeth = (QSetj − [−DQSetj+1]) U [+DQSetj+1]

(∵−DQSetj+1 and +DQSetj+1 are mutually exclusive)
 = (QSetj − [QSetj − QSetj+1]) U [QSetj+1 − QSetj]

(by definition 5)
= [QSetj I QSetj+1] U [QSetj+1− QSetj]
= [QSetj+1 I QSetj] U [C

jj QSetQSet I1+]
= QSetj+1 I [C

jj QSetQSet U] = QSetj+1 = QSeth
∴ if h = j + 1 then the given formula is correct.

2) Let us assume that the given formula is true when h = k
(for k ≥ j + 1), then
QSetk = (QSetj U [k

ji 1+=U +DQSeti])− [k

ji 1+=U −DQSeti]
QSetk+1 = (QSetk U [+DQSetk+1])− [−DQSetk+1] (by definition

5) = (QSetj U [k

ji 1+=U +DQSeti]
− [k

ji 1+=U −DQSeti]U [+DQSetk+1]) − [−DQSetk+1]
= (QSetj U [k

ji 1+=U +DQSeti]U [+DQSetk+1])
− [k

ji 1+=U −DQSeti] − [−DQSetk+1]
= QSetj U [1

1

+
+=

k

jiU +DQSeti]− [1

1

+
+=

k

jiU −DQSeti]
∴ The given formula is correct when h = k + 1 if it is cor-
rect when h = k.
∴ The given formula is correct when j < h by 1) and 2).

The case with j > h can be similarly proved as above.
The case with j = h is trivial.
End of proof

4.4 Analysis of Processing and Storage Costs

The processing cost of BMQ-Processor can be represented
as the total number of retrieved delta queries. The aver-
age number of retrieved delta queries U is determined by
two factors. First, U is proportional to the average distance
between two consecutive data values. As the distance in-
creases, more RS node visits are required to locate a new
matching node, thereby increasing the number of re-
trieved delta queries. We define Fluctuation Level (FL) as
the average distance normalized with respect to the do-
main size.

sizeDomain

1

1sizeDomain

distance Average 2

1

×
−

−
==
∑
=

−

M

XX

FL

M

i

ii

 (Xi is ith data value and M is the total number of tuples)

Second, U is proportional to the average density of delta

queries in an RS list. As the density increases, more delta
queries are retrieved even with the same FL. The average
density of delta queries in an RS list can be approximated
as (2 × Nq / Domain size), where Nq is the number of
BMQs. It is because each query ID is inserted only twice
into an RS list. Thus, the average processing cost of BMQ-
Processor can be formulated as Θ(2 × Nq × FL).

The storage cost of BMQ-Processor is decided by the
sizes of an RS list and a stream table. The size of the RS

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 9

list is Θ(2Nq) since each query is inserted once into
+DQSet and −DQSet, respectively. The size of the stream
table is proportional to the number of input data sources,
Nd. Consequently, the total storage cost of BMQ-Processor
is Θ(2Nq + Nd).

5 MULTI-DIMENSIONAL BMQ-PROCESSOR

For many applications, BMQ processing is also required
for multi-dimensional data. For example, location-based
services need to query and process two-dimensional or
even three-dimensional data. Many sensor networks are
composed of multi-functional sensors, which generate
multi-attribute sensing values, e.g., both temperature and
humidity.

We design multi-dimensional BMQ-Processor by ex-
tending one-dimensional BMQ-Processor. N-dimensional
BMQ-Processor stores delta query information in N dif-
ferent RS lists. Each RS list contains borders and delta
queries for each dimension. Upon data arrival, all RS lists
are quickly searched in order to obtain differential query
sets per dimension. To identify a final result, we develop
an efficient cross-check algorithm, which validates que-
ries in differential query sets per dimension.

Our solution approach is advantageous in several
ways. First, it has significantly low storage cost. As in the
one-dimensional case, a query is not repeatedly saved in
multiple N-dimensional regions, but only twice for each
dimension, i.e., 2N times total. Note that in other existing
approaches such as a grid-based index, a query is repeat-
edly saved in multiple grids. Second, it has a high
processing performance. Our analysis shows that the
processing algorithm requires only NN)1(− times of
processing time for one-dimensional BMQ-Processor. For
example, two-dimensional processor takes only 2 times
as much processing time as the one-dimensional proces-
sor does. Finally, while multi-dimensional BMQ-
Processor is advantageous in its performance and storage
cost, it is also simple in its data structures and processing
algorithms. We believe that simplicity is an important
feature especially from a practical point of view; it can be
easily implemented or incorporated in many different
systems.

In the rest of this section, we present two-dimensional
BMQ-Processor for the ease of explanation.

5.1 Data Structure

Two-dimensional BMQ-Processor consists of following
data structures: two RS lists (an RS-X list and RS-Y list), a
stream table, and a query table. Fig. 4 shows an example
of the processor with three registered queries. The RS-X
list is a list of region segments that together comprise the
range of the X-dimension, <RS-X1, RS-X2, …, RS-Xn>.
Each region segment RS-Xi maintains lower and upper
bounds of the region and ±DQSet for the X-dimension.
The RS-Y list maintains the information for a Y-dimension
similar to the RS-X list.

In the two-dimensional case, each entry of the stream
table has two pointers, Px and Py, pointing RS-Xi which
contains the current X-dimension value of the stream, and

RS-Yi which contains the current Y-dimension value of
the stream. Also, the current data value is saved for the
next processing operation. The stream table entry is up-
dated upon an arrival of a new data tuple for each data
stream. The query table, which is hashed with query ID,
saves the borders of queries; it is required for the cross-
check algorithm.

5.2 Query Registration and Deregistration

Two-dimensional BMQ-Processor also supports dynamic
query registration and deregistration. Upon a query regis-
tration and deregistration, an X-dimension predicate and
Y-dimension predicate of a query are separately
processed. Consider a query Qn, whose range is (xl, xu, yl,
yu). When registering Qn to the processor, an X-dimension
predicate, (xl, xu), is registered to the RS-X list and an Y-
dimension predicate, (yl, yu), is registered to the RS-Y list.
It is done by the one-dimensional query registration me-
thod. Also, Qn is added to the query table. Deregistration
of Qn is similarly processed.

5.3 Processing Algorithm

Upon an arrival of a data value, two-dimensional BMQ-
Processor computes QSet+ and QSet−. Fig. 5 shows overall
flow of the processing algorithm. The first step of the al-
gorithm is to calculate differential query sets for each di-
mension: ±XQSet and ±YQSet. This is simply done by
applying one-dimensional incremental processing algo-
rithm to the RS-X list and RS-Y list.

(vX3, vY3)

(vX2, vY2)

(vX1, vY1)

V

RS-Y4

RS-Y5

RS-Y2

PY

RS-X5s3

RS-X3s2

RS-X2s1

PXStreamID

(vX3, vY3)

(vX2, vY2)

(vX1, vY1)

V

RS-Y4

RS-Y5

RS-Y2

PY

RS-X5s3

RS-X3s2

RS-X2s1

PXStreamID

Stream Table

bY7

{Q1} {Q2}

{Q1}

{Q3}

{Q3} {Q2}

Q1

Q2

Q3

RS-X List

RS-Y List

RS-X5 RS-X6 RS-X7RS-X4RS-X3RS-X2

{} {}

-DQSet-Xi {} {}

{}

RS-Y2

RS-Y3

RS-Y4

RS-Y5

RS-Y6

RS-Y7

+DQSet-Yi-DQSet-Yi

{Q1}

{Q2}

{Q3}

{}

{}

{}

{}

{}

{}

{Q1}

{Q3}

{Q2}

+DQSet-Xi

{}

bX0 bX1 bX2 bX3 bX4 bX5 bX7

bY1

bY2

bY3

bY4

bY5

bY6

bX6

RS-X1

{}

{}

{} {} RS-Y1
bY0

v(s1)

v(s2)

v1(s3)

v3(s3)

v2(s3)

(bX4, bX5, bY3, bY5)

(bX2, bX6, bY2, bY6)

(bX1, bX3, bY1, bY4)

Range

Q3

Q2

Q1

QueryID

(bX4, bX5, bY3, bY5)

(bX2, bX6, bY2, bY6)

(bX1, bX3, bY1, bY4)

Range

Q3

Q2

Q1

QueryID

Query Table

Fig. 4. Two-dimensional BMQ-Processor

RS-X list search

(VXc, VYc)

RS-Y list search

±XQSet

±YQSet

cross-check
with Y-dimension

cross-check
with X-dimension

Union

VXc

VYc ±YBMQSet

±XBMQSet

QSet±

Per-dimension
processing

Validation through
cross-check

Union of
per-dimension

results

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Fig. 5. Flow of a processing algorithm

 /* Cross-check algorithm to validate queries in ±XQSet and ±YQSet */
/* Input : stream si’s data tuple with value of (vXc, vYc) */

/* Initialize the result sets */
±XBMQSet= {} and ±YBMQSet = {};

/* Validate ±XQSet through cross-check with Y-dimension */
For each element Qi of +XQSet
 Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table
 If(Qi_yl <vYc< Qi_yh) +XBMQSet � Qi

Obtain si’s previous data value, (vXp, vYp), using the stream table
For each element Qi of –XQSet
 Get Qi’s Y-dimension predicate, (Qi_yl, Qi_yh), from the query table
 If(Qi_yl <vYp< Qi_yh) -XBMQSet � Qi

/* Validate ±YQSet through cross-check with X-dimension */
Cross-check queries in ±YQSet with X-dimension using above method;

/* Output : ±XBMQSet and ±YBMQSet */

Fig. 6. Cross-check algorithm

The second step is to validate if crossing of either the
X- or Y-dimensional border really results in crossing of a
two-dimensional border. We developed an efficient cross-
check algorithm described in Fig. 6. The algorithm ex-
amines the borders of the unchecked dimensions of the
queries in per-dimension differential query sets.

A cross-check method for +XQSet (+YQSet) is different
from that for –XQSet (–YQSet). For a query in +XQSet, it
is checked if a newly arrived data value is located be-
tween the Y-dimension borders of the query. On the other
hand, for a query in –XQSet, it is checked if the previous
value of the stream was located between the Y-dimension
borders. Through the cross-check, the verified result BMQ
sets, ±XBMQSet and ±YBMQSet, are obtained. Finally,
QSet+ is calculated as a union of +XBMQSet and
+YBMQSet. QSet− is also calculated similarly.

5.4 Analysis of Processing and Storage Costs

The processing performance of multi-dimensional BMQ-
Processor is determined by the cost of RS node visits and
the cost of the cross-check. The total number of RS node
visits on multiple RS lists is decided by the sum of projec-
tions of distance vector on each dimension. Under the
assumption that the average distance is same as one-
dimensional case, the number of RS node visits becomes

d times as many as that of one-dimensional BMQ-
Processor in maximum, where d is the number of dimen-
sions. In the cross-check, d–1 times of comparison are per-
formed for queries in per-dimension differential query
sets, since predicates for all other dimensions should be
checked. Therefore, the required processing cost is

dd)1(− times as much as that of one-dimensional BMQ-
Processor, thereby being O(FLNdd q ××− 2)1(), where Nq
is the number of BMQs and FL is multi-dimensional fluc-
tuation level (see details in Appendix B).

The storage consumption is decided by the sizes of RS
lists, a stream table and a query table. Since there is an RS
list per dimension and the stream table has an RS node
pointer per dimension, the storage size for the RS lists
and the stream table is d times as large as that of one- di-
mensional BMQ-Processor. Additionally, multi-
dimensional BMQ-Processor maintains a query table, thus
the storage cost of multi-dimensional BMQ-Processor is

Θ(d(2Nq + Nd) + Nq), where Nd is the number of input data
sources.

6 REGION TRANSITION MONITORING

The semantics of border monitoring is also important as it
forms the basis for various, more complex and advanced
monitoring. As a sample case of such monitoring, we de-
velop region transition monitoring. The focus of the exten-
sion lies in monitoring a pair of consecutive border cross-
ings beyond an individual crossing. Specifically, it is mo-
nitored whether the consecutive border crossings occur or
not within a given time. This type of monitoring is practi-
cally important because it represents transition or stay of a
stream associated with a region. We first describe region
transition monitoring with a service scenario, and then
extend BMQ-Processor to support it.

6.1 Example Scenario

In a city, there are a plenty of parking garages. For users’
convenience, each parking garage tries to run an ad-
vanced toll system. The system waives tolls for the cars
which stay in the parking lot only for a short time. Some
cars come into the garage and go out, e.g., within three
minutes. Also, it re-validates formerly paid tolls for the
cars which have paid their tolls and temporarily left the
garage. Some may come back shortly, e.g., in three mi-
nutes, and would like to re-enter the garage but without
paying tolls again. For these purposes, it is necessary to
monitor the occurrence of paired border-crossing events,
i.e., the transition of cars associated with the parking lot.

On the other hand, the system charges tolls for the cars
which come into the garage and stay for more than a giv-
en time. Also, it invalidates formerly paid tolls for the
cars which left the garage and stay outside for more than
a given time. For these purposes, it is necessary to moni-
tor the non-occurrence of paired border-crossing events,
i.e., the stay of cars associated with the parking garage.

6.2 Definition of RTMQ

To facilitate the region transition monitoring, we define a
Region Transition Monitoring Query (RTMQ). An RTMQ
is represented as RTMQ(r, t), where
� r is a region of interest
� t is a time constraint

Given r and t, an RTMQ specifies four types of region
transition events (RTEs) for all input data streams. The four
types of RTEs are as following.

Type Semantics

I ⊳ O Transition such that a stream comes into and then
goes out of a region r within time t

O ⊳ I Transition such that a stream goes out of and then
comes into a region r within time t

I ⊳ ¬O Stay such that a stream comes into and then does
not go out of a region r within time t

O ⊳ ¬I Stay such that a stream goes out of and then does
not come into a region r within time t

Type Semantics

I ⊳ O Transition such that a stream comes into and then
goes out of a region r within time t

O ⊳ I Transition such that a stream goes out of and then
comes into a region r within time t

I ⊳ ¬O Stay such that a stream comes into and then does
not go out of a region r within time t

O ⊳ ¬I Stay such that a stream goes out of and then does
not come into a region r within time t

∗ ⊳ means that the right event occurs after the left one.
∗ ¬ means negation.

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 11

The two parameters r and t specify filtering conditions:
(1) r is the interest range for the generation of I and O
events (2) t constrains the time window, i.e., only I and O
events within the window t are valid. In addition, an
equality condition on stream_id is implied, i.e., sequenced
I and O events should refer to the same stream sources.

In the context of event-based systems, RTEs can be
considered as special types of composite events. Specifi-
cally, O⊳I and I⊳O are specified as a binary sequence, i.e.,
a SEQ operator in [11][33][58][64], of I and O events with
a time window t. O⊳¬I and I⊳¬O can similarly be speci-
fied additionally with negation operators. An RTMQ col-
lectively specifies all RTEs from a large number of input
streams and is especially useful in many location-based
applications.

6.3 Approach for Efficient RTMQ Processing

As in processing BMQs, RTMQ evaluation involves mas-
sive event processing over a large number of data streams.
Accordingly, we should carefully consider performance
issues for RTMQ processing. In the following, we present
our approach and discuss alternative approaches.

For RTMQ processing, we first need to detect I and O
events. Then post-processing is required (1) to compose
only I and O events from the same source and (2) to in-
spect if the matching I and O events satisfy the time con-
straint t. It is more important to efficiently handle the first
round, i.e., the detection of I and O events, since it direct-
ly operates on the high-rate input data streams. The post-
processing operates on the derived I and O event streams
with much lower rates. As BMQ-Processor is adept at
processing the first round, it makes the whole processing
efficient.

We develop an efficient algorithm, Transition-Sequence
(Tran-Seq), for the post-processing, which requires SEQ
operation along with a time constraint. (The algorithm is
described in Section 6.4.) Tran-Seq uses sliding widows as
well as hash tables for fast matching of event streams. In
this sense, it is similar to the sliding window hash join algo-
rithm, which is recognized as the state-of-the-art for the
continuous evaluation of equi-join operations [25][37].
Given an RTMQ(r, t), the four types of RTEs are
processed by sharing the same windows and hash tables.
Also, I and O events from multiple sources share the
same structures.

Existing methods for composite event detection can be
used for the post-processing [11][33][58]. In general, to
handle aggregated event streams from multiple sources,
they first de-multiplex the event streams based on
stream_id. Then, they evaluate the composition of I and O
events for each stream source along with checking a time
constraint. Compared to these approaches, the proposed
one is advantageous in that it processes I and O events
from multiple sources using the same Tran-Seq.

Recently, SASE was proposed as an efficient method
for the detection of composite events from large windows
[64]. Similar to Tran-Seq, it processes aggregated event
streams through a single NFA data structure. It also sup-
ports efficient sliding window-based filtering as well as
equality testing on multi-source event streams. While

SASE is very efficient and comparable to Tran-Seq, the
latter is a better choice for the post-processing of RTMQs.
Using SASE, given an RTMQ(r, t), the four different types
of RTEs should separately be processed with separate
data structures, i.e., a separate NFA, sliding window, and
stack for intermediary results. Our inspection shows that
SASE requires at most four times more in processing and
storage costs than the proposed method.

6.4 Processing Algorithm and Cost Analysis

Fig. 7 shows the processing flow of RTMQ(r, t). At first, I
and O events with respect to a BMQ with range r are de-
rived using BMQ-Processor. Then, Tran-Seq(t) composes
them while checking equality on stream_ids and time
constraint. Importantly, O⊳I and I⊳¬O are derived by
I⋊O, meaning searching the O window to match an in-
coming I event, and I⊳O and O⊳¬I by I⋉O, searching for
the I window to match a new O event. Since the two op-
erations are symmetrically processed, we explain only
I⋉O for conciseness. The I⋉O operation sequentially ex-
ecutes three sub-operations: 1) insert, 2) probe, and 3)
delete. The probe operation derives I⊳O, and the delete
extracts O⊳¬I. Fig. 8 shows the details of the operations.
Note that the probe operation includes the removal of the
matched event. For example, without 2-3) in Fig. 8, the
matched I event (I⊳O) would later be included as I⊳¬O.
It is a wrong result since a stream already transited
through the range is recognized as a staying stream.

1)insert

I event
streams

t

O event

streams

raw data
streams

BMQ-Processor

4)insert

3)delete

6)delete

2)probe

5)probe
region r

Transition-Sequence (Tran-Seq)

O

I

head tail

Pointer

Stream_id 1 2 …

I ⊳ ¬O

I ⊳ O

O⊳ I

O ⊳¬I

LL(O)

HT(O)

Fig. 7. Processing flow of RTMQ

Input: an O event (derived f rom BMQ-Processor)
Output: I⊳O and O⊳¬I

Four data structures: LL(I), HT(I), LL(O), HT(O)

(∗ Linked List (LL) and Hash Table(HT) for I and O event streams.
LL is used for buf fering and sliding events within t.
HT is used for probing events by a stream_id.)

1) insert:
1-1) Insert the event into the head of LL(O) with timestamp
1-2) Insert the stream_id of the event into HT(O) with pointer

2) probe:
2-1) Probe HT(I) by using the stream_id of the event

If (there exist an I event which has the same stream_id) {
2-2) Output the matched result as I⊳O

2-3) Delete the matched I event f rom LL(I) and HT(I)
}

3) delete:

3-1) Identify the O events which exceed the temporal constraint
by traversing f rom the tail of LL(O)

3-2) Output the identif ied O events as O⊳¬I
3-3) Delete the identif ied O events f rom LL(O) and HT(O)

Fig. 8. Detailed operations of I⋉O

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

BMQ f iltering λds x σBMQ = λI + λO = λe

Costs of a
Tran-Seq

Processing cost = λI{ insert(I) + probe(O) + delete(I)}
+ λO{insert(O) + probe(I) + delete(O)}

≃ λe{2 + (tλe/(2⋅|B|) + 2⋅σw) + 2}

Storage cost = Two hash tables and two linked lists
= 2tλI + 2tλO = 2tλe

(∗ We assume that I and O events show similar
occurrence f requency since they are symmetric.
Thus, λI ≃ λO≃ λe/2)

Notation Meaning

σBMQ selectivity of a BMQ

λds arrival rate of raw data streams

λI arrival rate of I events

λO arrival rate of O events

λe arrival rate of both I and O events

|B| number of hash buckets

σw selectivity factor of I and O window

Fig. 9. Analytical costs for a Tran-Seq

The cost of RTMQ processing is determined by BMQ-
Processor and Tran-Seq. Since the costs for BMQ-
Processor are described Section 4.4 and 5.4, we only ana-
lyze the costs for Tran-Seq (see Fig. 9). The processing
cost for Tran-Seq depends on the rate of I and O events
and the cost of operations performed upon the arrival of
an event. First, the rate of the events, λe is represented as
the multiplication of the rate of raw data streams, λds and
the selectivity of BMQ, σBMQ. Second, the costs of Tran-
Seq operations are as follows. Upon the arrival of an
event, insert and delete operations require two accesses2
(i.e., one access to the linked list and one access to the
hash table), respectively. An event is inserted into a hash
bucket in the order of arrivals and deleted in the reverse
order. The cost of the probe operation depends on both
the window size, tλe/2 and the number of hash buck-
ets,|B|. When probing the hash table, tλe/(2⋅|B|) tuples
must be accessed in the worst case, which is the number
of events in a hash bucket. If there is a matched event,
corresponding deletions on the linked list and hash table
follow and require two accesses, i.e., 2⋅σw. Finally, the
storage cost is decided by the two hash tables and two
linked lists.

In addition, we estimate the real costs through an ex-
periment based on the previous parking garage scenario.
We realistically model and simulate the location updates
of a million vehicles in a part of Seoul city (i.e., location
updates every 30 sec). Each garage is modeled as an
RTMQ with a range of size 30m x 30m and time con-
straint of 3 minutes. Through the experiment, we meas-
ured the three parameters: λds, λe, and σw. They are 33,300
data/sec, 21 events/sec and 0.5, respectively. We observe
that the I and O event rate, λe, is significantly reduced
through BMQ filtering compared to the raw data rate, λds.
It is trivial to see that processing over low-rate event
streams is always better than processing over high-rate
raw data streams. The impact of efficient filtering of
BMQ-Processor will increase with multiple RTMQs.

2 For concise analysis, we regard the cost of a single operation on LL or
HT as one access, i.e., the unit of cost, as in [37].

The cost of Tran-Seq processing is estimated from the
above measured values, i.e., λe{2+(tλe/(2⋅|B|)+2⋅σw) +
2} = 126 accesses/sec. In the estimation, we set |B| to the
same number as the window size, i.e., tλe/2 = 1,890. A
hash table of this size is more than viable for a typical in-
memory hash table implementation. The cost, i.e., 126
accesses/sec, is almost negligible compared to the raw
input data access cost, i.e., λds = 33,300 accesses/sec.
Through these analyses, we see that our mechanism con-
sisting of BMQ-Processor and Tran-Seq efficiently
processes RTMQs.

7 EXPERIMENTS

In this section, we discuss the results of our performance
study on BMQ-Processor. The experiment consists of
three parts: performance study on one-dimensional BMQ
processing, that on two-dimensional BMQ processing,
and that on multi-dimensional BMQ processing. We
compare the processing performance and storage cost of
BMQ-Processor with a RMQ evaluation-based mechan-
ism, namely DiffRMQ. DiffRMQ derives differential
query sets in two steps. It first retrieves matching query
sets for consecutive data values. Then, it performs a set
difference operation on the resulting matching query sets
of two consecutive data values and removes the queries
containing both data values. The state-of-the-art RMQ
evaluation methods are used for DiffRMQ; CEI [63] and
IS-list [27] for one-dimensional BMQ processing and CES
[62] for two-dimensional BMQ processing. The experi-
ments are conducted using a machine equipped with P-III
1GHz CPU, 512MB RAM, and Linux 2.4.

7.1 Performance of One-dimensional BMQ Processing

7.1.1 Experimental Setup

Stream generation. For this experiment, we consider the
financial trading scenario described in Section 3.1. Based
on the observation on Korean stock market (see Appendix
A), we synthetically generate stock price streams. We
vary FL from 0.01% to 0.1%, as observed from the traces.
We use 2000 stream sources as the input, and each stream
contains 1,000 data tuples. Initial stock prices follow uni-
form distribution.

Query generation. Queries specify the ranges of stock
prices to be monitored. We distribute the queries by locat-
ing lower bounds of query ranges between 1 and D – 1,
where D is fixed to 1,000,000, the maximum price of most
Korean stocks [38]. The lower bounds follow a uniform
distribution. In practice, the width of a query, W, is usual-
ly larger than FL. We set W to 1 ~ 10 times larger than FL.
W is also normalized with respect to the domain size.
Finally, the number of queries, N, varies from 10K to
100K.

7.1.2 Processing Performance

In this experiment, we compare the performance of BMQ-
Processor with that of DiffRMQ. For intuitive comparison,
we first measure the Processing Efficiency (PE) which is
defined as follows.

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 13

(%)100

result teintermedia of size

result final of size

1

1 ×=

∑

∑

=

=
M

i

M

iPE

(M is the total number of input data tuples)

In BMQ-Processor, the size of the intermediate result is

the total number of retrieved delta queries during an
evaluation. In DiffRMQ, it is the number of the matching
queries. In both cases, the size of the final result is the
total number of differential queries after evaluation. We
then measure the average processing time, which is
measured as the elapsed time to produce the final result
per data tuple. We measure the PE and the average
processing time while varying three parameters: the
number of queries N, the width of queries W, and the
fluctuation level FL.

(a) Processing Efficiency (%)

0

20

40

60

80

100

0 20 40 60 80 100

Number of queries (K)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average processing time

0

20

40

60

80

100

0 20 40 60 80 100
Number of queries (K)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(µs)

Fig. 10. Effect of the number of queries (W=0.1%, FL=0.01%)

(a) Processing Efficiency (%)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Width of queries (%)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average processing time

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Width of queries (%)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(µs)

Fig. 11. Effect of the width of queries (N=100K, FL=0.01%)

(a) Processing Efficiency (%)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Fluctuation Level (%)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average processing time

0

20

40

60

80

100

120

0 0.02 0.04 0.06 0.08 0.1

Fluctuation Level (%)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(µs)

Fig. 12. Effect of the Fluctuation Level (N=100K, W=0.1%)

(a) Processing Efficiency (%)

0

20

40

60

80

100

uniform x

uniform

uniform x

normal

normal x

uniform

normal x

normal

Data distribution x Query distribution

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(b) Average processing time

0

20

40

60

80

100

120

140

160

uniform x

uniform

uniform x

normal

normal x

uniform

normal x

normal

Data distribution x Query distribution

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(µs)

Fig. 13. Effect of the distribution (N=100K, W=0.1%, FL=0.01%)

First, we vary N from 10K to 100K. W and FL are fixed

to 0.1% and 0.01%, respectively. Fig. 10 shows the PE and
the average processing time as a function of N. The PE of
BMQ-Processor is 100% regardless of the number of que-
ries and much higher than the PE of DiffRMQ. In
DiffRMQ, consecutive matching query sets are likely to
much overlap due to the locality in data streams. Thus,
many irrelevant queries are accessed to obtain only a few
differential queries. Consequently, the processing time of
DiffRMQ is significantly longer than that of BMQ-
Processor. The slight increase in the processing time of
BMQ-Processor mainly comes from the increase in the
final result size, which tends to grow with the number of
registered queries.

Second, we vary W from 0.01% to 0.1%. N and FL are
fixed to 100K and 0.01%, respectively. Fig. 11 shows the
results. As the width of the queries increases, the PE of
DiffRMQ rapidly decreases, whereas that of BMQ-
Processor remains almost 100%. It is because the size of
the intermediate result of DiffRMQ increases with the
width of queries. However, that of BMQ-Processor is not
affected by the width of queries. The size of final result
does not change in neither of the cases. Therefore, as the
width of queries increases, the processing time of
DiffRMQ increases significantly, but that of BMQ-
Processor remains constant.

Third, we vary FL from 0.01% to 0.1%. N and W are
fixed to 100K and 0.1%, respectively. As FL increases, the
size of the intermediate result of BMQ-Processor increases
while that of DiffRMQ changes little. The size of the final
result increases in both cases. Thus, the PE of BMQ-
Processor decreases slowly while that of DiffRMQ in-
creases rapidly as shown in Fig. 12 (a).

Interestingly, the PE of BMQ-Processor is higher than
that of DiffRMQ as long as FL is smaller than W. It is be-
cause the average intermediate result size of DiffRMQ is
2W·N3 while that of BMQ-Processor is 2FL·N. According-
ly, the processing time of BMQ-Processor is smaller than
that of DiffRMQ if FL is smaller than W. If FL increases
up to W, the processing time of BMQ-Processor becomes
slightly larger than that of DiffRMQ due to the increasing
cost of RS node traversals. However, W is generally larger
than FL in practical cases.

To investigate the effect of skewed data and query dis-

3 Given a data value, the number of matching queries is W·N in RMQ
processing method. In DiffRMQ, two sets of matching queries must be
accessed for previous and current values to perform a set difference op-
eration.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

tributions, we perform an additional experiment. We use
a normal distribution to simulate the skewed distribu-
tions of data and queries. The distributions for data and
queries have the same mean value, i.e., D/2. We generate
four different combinations of data and query distribu-
tions to evaluate the performance under various situa-
tions. N, W and FL are fixed to 100K, 0.1% and 0.01%,
respectively.

The change of the distributions does not affect the PE
as shown in Fig. 13(a). This means that the ratio of the
intermediate result size over the final result size is the
same regardless of the distributions. The PE of BMQ-
Processor remains 100%, which is ten times larger than
that of DiffRMQ.

As shown in Fig. 13(b), when either one of the data and
query distributions is skewed, the processing time
changes little. Consider the case that only queries are
skewed. In the regions where the query borders are
densely located, the processing time for a corresponding
data value increases. However, it decreases in sparse re-
gions. As a result, the average processing time does not
change. When only the data distribution is skewed, the
average processing time is not affected.

An interesting result is that the average processing
time is considerably larger when both data and query
distributions are skewed. In this case, many of the values
in the streams are located in the region where the query
borders are densely located. Thus, both the final and in-
termediate result sizes increase, resulting in an increase in
the processing time. Since the intermediate result size of
BMQ-Processor is much smaller than that of DiffRMQ,
BMQ-Processor is more efficient in terms of processing
time. In conclusion, BMQ-Processor is more robust
against skewed data and query distributions than
DiffRMQ.

7.1.3 Storage Cost

In this experiment, we compare the storage cost of BMQ-
Processor to that of DiffRMQ. We measure the size of the
memory space used for each processing method. To iden-
tify the effect of N and W on storage cost, we run two
experiments. In the first experiment, we vary N from 10K
to 100K and fix W to 0.1%. In the second, we vary W from
0.01% to 0.1% and fix N to 100K.

Fig. 14(a) shows the result of the first experiment.
BMQ-Processor uses much less memory than the two
DiffRMQs, especially than CEI-based DiffRMQ. In gener-
al, RMQ processing methods store queries redundantly.
CEI stores a query into multiple grids covered by its
range. Even a tree-based method, i.e., IS-list, stores a
query log N times (N is the number of registered queries).
In contrast, BMQ-Processor stores a query only twice,
thereby resulting in considerably smaller storage cost.

Fig. 14(b) shows the storage size as a function of query
width. The storage cost of CEI-based DiffRMQ increases
rapidly with query width. In CEI, a query with a wide
range is repeatedly inserted to the grids overlapping the
range, resulting in high storage cost. As for IS-list-based
DiffRMQ, its storage cost is less affected by query width
as it is a tree-based approach. BMQ-Processor shows a

constant storage usage regardless of query width since it
only stores two delta queries upon each query registra-
tion.

Storage size (MB)

0

20

40

60

80

0 20 40 60 80 100

Number of queries (K)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

Storage size (MB)

0

20

40

60

80

0 0.02 0.04 0.06 0.08 0.1

Width of queries (%)

BMQ-Processor
DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

(a) Effect of N (W=0.1%) (b) Effect of W (N=100K)

Fig. 14. Storage cost

7.1.4 Scalability with the Number of Data Streams

We test the scalability of BMQ-Processor as increasing the
number of data streams, S, from 1K to 128K in log-scale.
This experiment is important since BMQs monitor a large
number of data streams in our target application scena-
rios. For the experiment, N, W and FL are fixed to 100K,
0.1%, and 0.01%, respectively. We measure the storage
cost and total processing time taken for processing a data
tuple from each data stream, i.e., S tuples in total.

0

40

80

120

160

200

0 20 40 60 80 100 120 140

Number of data streams

Storage size (MB)
BMQ-Processor

DiffRMQ (CEI-based)

DiffRMQ (IS-list-based)

(x1000)

1

10

100

1000

10000

0.5 1 2 4 8 16 32 64 128 256

Number of data streams

Total processing time (ms)
BMQ-Processor

DiffRMQ (CEI-based)
DiffRMQ (IS-list-based)

log-scale

(x1000)

log-scale

(a) Processing cost (b) Storage cost

Fig. 15. Scalability with the number of data streams

As shown in Fig. 15(a), total processing time of BMQ-
Processor grows linearly with the number of data streams
in log-log scale. This linear growth is also shown in the
DiffRMQs’ cases. It is shown that the total processing
time of BMQ-Processor is 6.8 times smaller than those of
DiffRMQs. The time gap does not change with varying
number of data streams. The significant gap in processing
times comes from the similar reasons discussed in 7.1.2.
The result conforms to the observation that the processing
time additively increases with additional streams to the
input. It is because data tuples from different data
streams are separately processed without intervening
each other. As mentioned, the processing time per tuple
does not change when N, W, and FL are fixed. Fig. 15(b)
shows storage costs. The storage consumption of BMQ-
Processor is the lowest, and hardly increases. It is because
BMQ-Processor only adds a stream_id and a
node_pointer for a stream source, which requires a neg-
ligible amount of memory space. In contrast, DiffRMQs
require maintaining previous matching query set per
stream source. This results in linear increases of the sto-
rage usage as the number of streams increases.

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 15

7.2 Performance of Two-dimensional BMQ Processing

7.2.1 Experimental Setup

Stream generation. For this experiment, we consider the
location-based advertisement scenario introduced in Section
3.1. We use Network-based Generator of Moving Objects
(NGMO[49]) to generate location data streams. The road
map of Oldenburg, a city in Germany is used for the data
generation. The map is 15km by 15km in size. To generate
streams with different FL, we assume that there are two
kinds of moving objects: fast objects such as vehicles and
slow objects such as pedestrians. The maximum speed of the
fast objects is 60km/h and the average is 20km/h. Similarly,
the slow objects have 12km/h of maximum speed and
4.3km/h of average speed. The number of the moving ob-
jects, i.e., stream sources, is set to 1,000, and the location up-
date period is 30 sec. We collect 100 location data from each
stream source.

Query generation. Queries specify advertisement regions,
which are monitored to identify border-crossings. We as-
sume that all advertisement regions are square. Stores are
usually located densely in downtown area of a city, and
hence, a query distribution is likely skewed. Thus, we use a
normal distribution with the mean value being the center of
the city. We expect that the number of advertising stores in a
city is up to several thousands, and vary the number of que-
ries from 0.5K to 5K. Different stores advertise in the regions
of different sizes. For example, a gas station may send its
electronic coupons within a several-kilometer region, while a
restaurant, within a several-hundred-meter region. We vary
the width of queries from 0.5km to 5km.

7.2.2 Processing Performance

First, we vary N from 0.5K to 5K. W is fixed to 5km. Fig. 16
shows the PE and the average processing time as a function
of the number of queries. Compared to the one-dimensional
case, the PE of BMQ-Processor is smaller because the size of
the intermediate result increases but many of them are not
included in the final result. However, the PE of BMQ-
Processor is still much higher than that of CES-based
DiffRMQ. Accordingly, the processing time of BMQ-
Processor is significantly lower than that of CES-based
DiffRMQ with the same FL. The processing time of CES-
based DiffRMQ drastically increases as the number of que-
ries increases. It is because more matching queries should be
accessed with more registered queries. The processing time
of BMQ-Processor also increases slightly. However, the in-
crease is much slower because the number of accessed que-
ries is much smaller than in CES-based DiffRMQ. We can
see the effect of FL on the performance of BMQ-Processor in
Fig. 16 (b). A fast moving object is likely to incur a larger size
of the intermediate and the final results than a slow moving
object. As a result, the processing time for a fast moving ob-
ject is larger than that for a slow moving object. The effect
becomes more apparent as the number of queries increases.

Second, we vary W from 0.5km to 5km. N is fixed to 5K.
Fig. 17 shows the PE and the average processing time as a
function of query width. The overall PE of BMQ-Processor is
superior to that of CES-based DiffRMQ. Consequently, the
processing time of BMQ-Processor is much lower than that

of CES-based DiffRMQ with the same FL. For BMQ-
Processor, the processing time is almost constant regardless
of query width. On the other hand, that of CES-based
DiffRMQ rapidly increases, possibly leading to a critical per-
formance problem. We can also see the effect of the FL on
the performance of BMQ-Processor in Fig. 17 (b). The
processing time is larger for a fast moving object as ex-
plained before.

7.2.3 Storage Cost

We also compare the storage cost of BMQ-Processor with
that of DiffRMQ. We present the utilized storage size as a
function of N and W. First, we vary N from 0.5K to 5K and
fix W to 5km. Second, we vary W from 0.5km to 5km and fix
N to 5K.

(a) Processing Efficiency (%)

0

20

40

60

80

100

0 1 2 3 4 5

Number of queries (K)

BMQ-Processor (fast)
BMQ-Processor (slow)
CES-based (fast)
CES-based (slow)

(b) Average processing time

0

50

100

150

200

250

300

0 1 2 3 4 5

Number of queries (K)

BMQ-Processor (fast)
BMQ-Processor (slow)
CES-based (fast)
CES-based (slow)

(µs)

Fig. 16. Effect of the number of queries (W=5km)

(a) Processing Efficiency (%)

0

20

40

60

80

100

0 1 2 3 4 5

Width of queries (km)

BMQ-Processor (fast)
BMQ-Processor (slow)
CES-based (fast)
CES-based (slow)

(b) Average processing time

0

50

100

150

200

250

300

0 1 2 3 4 5

Width of queries (km)

BMQ-Processor (fast)
BMQ-Processor (slow)
CES-based (fast)
CES-based (slow)

(µs)

Fig. 17. Effect of the width of queries (N=5K)

Storage size (MB)

0

50

100

150

200

0 1 2 3 4 5

Number of queries (K)

BMQ-Processor
CES-based

Storage size (MB)

0

50

100

150

200

0 1 2 3 4 5

Width of queries (km)

BMQ-Processor

CES-based

(a) Effect of N (W=5Km) (b) Effect of W (N=5K)

Fig. 18. Storage cost

Fig. 18(a) shows the storage size as a function of the
number of queries. The storage size for CES-based DiffRMQ
increases from 63.5MB to 203MB. Similar to the case of CEI, a
query is redundantly stored in multiple grids covered by a
query region in CES, resulting in significant storage cost.
However, BMQ-Processor consumes much smaller storage
space, i.e., less than 1MB since a query is stored only twice
for each dimension.

Fig. 18(b) shows the storage size as a function of query
width. BMQ-Processor consumes almost a constant amount
of storage space, i.e., about 0.38MB, regardless of the width
of queries. However, the storage size for CES-based
DiffRMQ considerably increases with the width of queries.
With an increase in W, i.e., an increase in a query coverage,

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

the query needs to be stored in more grids of CES, which
results in high storage consumption.

In Fig. 18, it is shown that BMQ-Processor consumes at
most hundred times smaller storage space than CES-based
DiffRMQ. Also, Fig. 14 shows that it consumes at most ten
times smaller storage space than CEI-based DiffRMQ. In
conclusion, BMQ-Processor is very efficient in storage usage
in both two-dimensional and one-dimensional case.

7.3 Performance of Multi-dimensional BMQ Processing

7.3.1 Experimental Setup

This experiment examines the effect of dimensionality on
the performance of BMQ-Processor. We assume that each
dimension has the same maximum size, i.e., 105. The FL of
data streams for each dimension is 0.1%. Queries have the
same width for every dimension, i.e., 0.1%. We vary the
number of dimensions from one to nine. The number of
queries is fixed to 10K. We use uniform distribution for
data and query generations.

7.3.2 Processing Performance

Fig. 19(a) shows the average processing time as a function of
the number of dimensions, d. The average processing time
increases very slowly with dimension. The figure also
shows estimated processing times for comparison. From the
analysis described in Section 5.4, the processing time is

dd ×−)1(×
1τ , where

1τ is the processing time for one-
dimensional case. The estimation has been made using the
measured average processing time for one dimensional case.
As shown in the figure, the average processing time grows
very slowly, compared to the estimated values. It is because
BMQ-Processor does not have to perform cross-checking
completely with every dimension. Assume that the X-
dimensional border of a query has been crossed by a recent
data value. Then, it should be validated if the data value
really crossed the borders of other dimensions, e.g., y- and z-
dimension, as well. However, once it is found that y-
dimensional border has not been crossed, the inter-
dimensional validation process does not have to continue
with z-dimension. In conclusion, the proposed BMQ-
Processor scales very well with dimension, and is a practical
solution for multi-dimensional BMQ processing.

Storage size (MB)

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Number of dimension (d)

BMQ-Processor

Average processing time

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10
Number of dimension (d)

Experimental measure

Analytic estimation

(µs)

(a) Processing performance (b) Storage cost

Fig. 19. Effect of the dimensionality

7.3.3 Storage Cost

Fig. 19(b) shows the storage size as a function of the number
of dimensions. Because a separate RS list is used for each
dimension, the consumed storage size increases linearly to
the number of dimensions. Even for 9 dimensional case,
BMQ-Processor consumes less than 7MB of memory space.

This low storage cost is a great advantage of BMQ-Processor
as in-memory processing is important for stream processing.

8 CONCLUSION

In this paper, we have presented BMQ-Processor, a high-
performance border-crossing event detection framework
for large-scale monitoring applications. Our study is the
first attempt to propose BMQ-Processor which handles a
large number of BCEs over numerous high-rate data
streams. For this purpose, we develop a novel shared and
incremental processing mechanism. For shared
processing, BMQ-Processor adopts a query indexing ap-
proach, thereby achieving a high level of scalability. For
incremental processing, BMQ-Processor utilizes the locali-
ty of data streams and accordingly develops a stateful
query index. Thus, successive BMQ evaluations are sig-
nificantly accelerated. Based on the main idea, we design
a one-dimensional as well as a multi-dimensional BMQ-
Processor to support various monitoring applications. We
also discuss region transition monitoring as an attempt to
extend border monitoring semantics to more advanced
ones. Our extensive experimental study and analysis
demonstrate excellent processing performance and low
storage cost of BMQ-Processor; BMQ-Processor outper-
forms the state-of-the-art query index-based evaluation
mechanisms by orders of magnitude.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments which help significantly improve the quality of
the paper.

APPENDIX

A. Locality of Data Streams

We expect that data streams change gradually in many
practical situations. In this appendix, we examine the lo-
cality of data streams with real data traces. (The discus-
sion here does not aim at generalizing the existence of
locality; such generalization should not be made in haste
and may not even be possible. However, we think there
are also many practical cases showing locality.) We first
analyze two numerical data streams: the stock price of
Samsung and LG Electronics [38]. Fig. 20 shows their
prices from April 14th to April 22nd, 2004. As we ex-
pected, the stock prices change gradually. Especially,
LG’s stock price changes more gradually than Samsung’s.

In order to quantify the degree of locality of a given
data stream, we defined Fluctuation Level (FL) in Section
4.4. Note that the degree of locality is high when differ-
ences between data values are small, and vice versa. That
is, the degree of locality is inversely proportional to FL.

In order to identify FL’s dependence on data sources as
well as the sampling rate, we plot FL for the each data
source according to the sampling rate. As shown in Fig.
21, the FL of the LG stock data is smaller than that of
Samsung’s. Thus, the degree of locality for LG’s stock
data is higher than that of Samsung’s. More important,

J. LEE ET AL.: BMQ-PROCESSOR: A HIGH-PERFORMANCE EVENT DETECTION FRAMEWORK FOR LARGE-SCALE MONITORING APPLICATIONS 17

the FL decreases as the sampling rate increases in both data
streams, which means that the degree of locality increases.

580000

590000

600000

610000

620000

630000

640000

Time

P
ri

c
e
 (

W
o

n
)

-
S

a
m

s
u

n
g

50000

60000

70000

80000

90000

100000

110000

P
ri

c
e
 (

W
o

n
)

-
L
G

Samsung

LG

0.00

0.05

0.10

0.15

0.20

1/30min 1/10min 1/5min 1/1min 1/0.5min

Sampling rate

F
lu

c
tu

a
tio

n
 le

v
e
l (

%
)

Samsung

LG

Fig. 20. Real stock prices Fig. 21. FL of stock prices

PDF

0

0.2

0.4

0.6

0.8

-1000 -500 0 500 1000
Differnece (Won)

LG(1/0.5min)
LG(1/1min)
LG(1/5min)
LG(1/10min)
LG(1/30min)

PDF

0

0.2

0.4

0.6

0.8

-10000 -5000 0 5000 10000
Differnece (Won)

S(1/0.5min)
S(1/1min)
S(1/5min)
S(1/10min)
S(1/30min)

Fig. 22. PDF for difference of two consecutive values in stock prices

0

10

20

30

40

50

60

70

1 Time

T
e
m

p
e

ra
tu

re
 (

F
)

Fig. 23. Real temperature

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30min 10min 5min 1min

Sampling period

F
lu

c
tu

a
ti
o
n
 l
e
v
e
l
(%

)

PDF

0

0.2

0.4

0.6

0.8

-2 -1 0 1 2

Difference (F)

T(1/1min)
T(1/5min)
T(1/10min)
T(1/30min)

(T: Temporature)

Fig. 24. FL of temperature Fig. 25. PDF of difference

Although this is as expected, we note that it has an in-
teresting implication. Usually, increasing the update fre-
quency directly increases the processing load, resulting in
severe performance problems. However, BMQ-Processor
does not incur much processing cost even at high data
rates. It is mainly because the degree of locality increases
according to the increase in the sampling rate.

Finally, Fig. 22 shows the probability density function
(PDF) of value differences between two consecutive data.
They present the characteristics of locality in detail. Even
though the shape of distributions is a little bit different
from each other, they follow a skewed-distribution cen-
tered to zero. As the sampling rate decreases, the distribu-
tion becomes more widely spread to the larger difference
values. Interestingly, the probability of zero difference,
i.e., consecutive values are the same, is considerably high.

We also investigate the sensor data stream, atmospher-
ic temperature data from the University of Washington
[57]. Fig. 23 shows temperature data during eight days
from May 6th to May 13th 2004. We observed the similar
behavior in temperature data as shown in Fig. 24 and 25.

B. Performance analysis of BMQ-Processor

Lemma. The time complexity of d-dimensional processing op-

eration is O()2(FLNdd q
)

Proof.

Let),,,,(321 dvvvvv L= be a movement vector from
previous data value at t-1 to the data value at t. Then, the
total number of queries retrieved from RS node traversals
for d dimensions at time t is

∑
=

×
d

i i

i
q

D

v
N

1

2
 (when queries are uniformly distributed)

The average number of the retrieved queries for m times
of data updates is

1

1
)2(

2 1 −
××∑ ∑

= = mD

v
N

m

t

d

i i

i
q

=

)
1

1
(2

1 2 −
××∑∑

= = mD

v
N

d

i

m

t i

i
q

=

∑
=

×
d

i

iq FLN
1

2

Let dRx∈ , dRy∈ and),,,,(321 dFLFLFLFLx L= ,

) 1 , ,1 ,1 ,1 (L=y
By Cauchy-Schwarz inequality

22

2

2

1

22

2

2

12211 |||| dddd yyyxxxyxyxyxyx ++++≤+++=⋅ LLL

22222

2

2

121 111|| ++++++≤+++ LLL dd FLFLFLFLFLFL

dFLFLFLFL d ≤+++ || 21 L (Qby definition of multi-
dimensional FL, 222

2

2

1 FLFLFLFL d =+++ L)

Thus, the total number of queries retrieved from RS node

traversals,
 ∑

=

×
d

i

iq FLN
1

2
 , can be bounded by FLdNq ×2 .

Since a query retrieved from an RS node traversal should

be crossed-checked with other (d-1) dimensions, the total

processing cost is O(FLdNd q ××− 2)1(), which is equal to

O()2(FLNdd q
).

Cf) Cauchy-Schwarz inequality

http://planetmath.org/encyclopedia/CauchySchwarzInequality.html

REFERENCES
[1] D. J. Abadi, S. Madden, and W. Lindner, “REED: Robust, Efficient

Filtering and Event Detection in Sensor Networks”, Proc. VLDB, 2005.
[2] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul and S. Zdonik, “Aurora: A New Model and
Architecture for Data Stream Management”. VLDB Journal, vol. 12, no. 2,
pp. 120-139, August 2003.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A Sur-
vey on Sensor Networks" IEEE Communication Magazine, vol.40, no.8,
pp.102-114, August 2002.

[4] A. Arasu, S. Babu and J. Widom, “The CQL Continuous Query Lan-
guage: Semantic Foundations and Query Execution” VLDB Journal, vol.
15, no. 2, pp. 121-142, June 2006.

[5] G. Banavar, M. Kaplan, K. Shaw, R.E. Strom, D.C. Sturman, and W.
Tao., "Information Flow Based Event Distribution Middleware", Proc.
ICDCS Workshop, 1999.

[6] L. Bao and S. S. Intille, “Activity recognition from user-annotated acce-
leration data”, Proc. Pervasive 2004.

[7] I. Biswas, “A Composite Event Definition Language and Detection
System for the Integration Rules Environment”, Master thesis, Arizona
state university, May 2005.

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation
of a Wide-Area Event Notification Service", ACM Transactions on Com-
puter Systems, vol. 19, no. 3, pp. 332-383, 2001.

[9] S. Chakravarthy and R. Adaikkalavan, “Ubiquitous Nature of Event-
Driven Approaches: A Retrospective View (Position Paper), Proc. Dags-
tuhl Seminar 07191, 2007.

[10] S. Chakravarthy, et al., "HiPAC: A research project in active, time-
constrained database management", Technical Report XAIT-89-02, Xerox
Advanced Information Technology, August 1989.

[11] S. Chakravarthy and D. Mishra, "Snoop: An Expressive Event Specifica-
tion Language for Active databases", Data and Knowledge Engineer-
ing(DKE), Vol. 14, pp. 1-26, 1994.

[12] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, “Com-
posite Events for Active Databases: Semantics, Contexts and Detection”,
Proc. VLDB, 1994.

[13] S. Chakravarthy, E. Anwar, L. Maugis, and D. Mishra, “Design of Sen-
tinel: An Object-Oriented DBMS with Event-Based Rules”, Information

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

and Software Technology, vol.36, no.9, pp.559-568, 1994.
[14] S. Chandrasekaran and M. J. Franklin, “Streaming Queries over Stream-

ing Data”, Proc. VLDB 2002.
[15] J. Chen, D. DeWitt, F. Tian, and Y. Wang, "NiagaraCQ: A Scalable Con-

tinuous Query System for Internet Databases", Proc. SIGMOD 2000.
[16] A. Demers, J. Gehrke, and B. Panda, “Cayuga: A General Purpose

Event Monitoring System”, Proc. CIDR, 2007.
[17] L. Elkhalifa, R. Adaikkalavan, and S. Chakravarthy: “InfoFilter: A Sys-

tem for Expressive Pattern Specification and Detection Over Text
Streams”, Proc. SAC, 2005.

[18] P. Fahy and S. Clarke, “CASS – a middleware for mobile context-aware
applications”, Proc. Workshop of Context Awareness, MobiSys 2004.

[19] C.L. Forgy, “Rete: A fast algorithm for the many pattern/many object
pattern match problem”, Artificial Intelligence, vol.19, no.1, pp.17-37, Sep-
tember 1982.

[20] V. Garg, R. Adaikkalavan, and S. Chakravarthy, “Extensions to Stream
Processing Architecture for Supporting Event Processing”, Proc. DEXA,
2006.

[21] S. Gatziu and K. R. Dittrich, " SAMOS: an Active Object-Oriented Data-
base System", IEEE Quarterly Bulletin on Data Engineering, vol. 15, no. 1-4,
December 1992.

[22] S. Gatziu and K. R. Dittrich, "Events in an Active Object-Oriented Data-
base System", Proc. Rules in Database Systems (RIDS), 1993.

[23] N. Gehani, H. V. Jagadish, and O. Shmueli, "COMPOSE: A System for
Composite Event Specification and Detection", Advanced Database Sys-
tems, Lecture Notes in Computer Science, vol. 759, pp.3-15, 1993.

[24] N. Gehani and H. V. Jagadish, "Ode as an Active Database: Constraints
and Triggers”, Proc. VLDB, 1991.

[25] L. Golab and M. Tamer Ozsu, “Data Stream Management Issues – A
Survey”, SIGMOD Record 2003.

[26] R. E. Gruber, B. Krishnamurthy, and E. Panagos, "The Architecture of
the READY Event Notification Service", Proc. ICDCS Workshop, 1999.

[27] E. N. Hanson and T. Johnson, “Selection Predicate Indexing for Active
Databases using Interval Skip Lists”, Information Systems, vol. 21, no. 3,
pp. 269–298, 1996.

[28] E. N. Hanson, M. Chaabouni, C. Kim, and Y. Wang, “A predicate
matching algorithm for database rule systems”, Proc. SIGMOD 1990.

[29] E. N. Hanson, C. Carnes, L. Huang, M.Konyala and L.Noronha, “Scala-
ble Trigger Processing”, Proc. ICDE 1999.

[30] E. N. Hanson, "The Design and Implementation of the Ariel Active
Database Rule System", IEEE Transactions on Knowledge and Data Engi-
neering(TKDE), vol. 8, no. 1, February 1996.

[31] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond aver-
age: Towards Sophisticated Sensing with Queries”, Proc. IPSN, 2003.

[32] A. Hinze and S. Bittner, “Efficient Distribution-Based Event Filtering”,
Proc. DEBS workshop, 2002.

[33] A. Hinze, “Efficient Filtering of Composite Events”, Proc. BNCD, 2003.
[34] H. Hu, J. Xu and D. Lee, "A Generic Framework for Monitoring Conti-

nuous Spatial Queries over Moving Objects", Proc. SIGMOD 2005.
[35] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “Estreams: Towards

an Integrated Model for Event and Stream Processing”, Technical Report
CSE-2004-3, University of Texas at Arlington, July 2004.

[36] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Hambrusch,
"Efficient evaluation of continuous range queries on moving objects",
Proc. DEXA, 2002.

[37] J. Kang, J. F. Naughton, and S. D. Viglas, “Evaluating Window Joins
over Unbounded Streams”, Proc. ICDE, 2003.

[38] Korea stock exchange. http://www.kse.or.kr.
[39] J. Lee, S.Kang, S. Choi, H. Jin, S. Choe, and J. Song, " LARI: Locality-

Aware Range query Index for High Performance Data Stream
Processing", Technical Report CS-TR-2004-202, August 2004.

[40] J. Lee, Y. Lee, S. Kang, S. Lee, H. Jin, B. Kim, and J. Song, "BMQ-Index:
Shared and Incremental Processing of Border Monitoring Queries over
Data Streams”, Proc. MDM 2006.

[41] G. Li and H. Jacobsen, “Composite Subscriptions in Content-Based
Publish/Subscribe Systems”, Proc. Middleware, 2005.

[42] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao, “State-Centric Programming
for Sensor-Actuator Network Systems.” IEEE Pervasive Computing,
pp.50-62, October, 2003.

[43] C. Ma and J. Bacon, “COBEA: A CORBA-Based Event Architecture”,
Proc. COOTS, 1998.

[44] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman, “Conti-
nuously Adaptive Continuous Queries over Streams”, Proc. SIGMOD
2002.

[45] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The
Design of an Acquisitional Query Processor for Sensor Networks”, Proc.
SIGMOD 2003.

[46] M. F.Mokbel, X. Xiong and W. G. Aref, "SINA: Scalable Incremental
Processing of Continuous Queries in Spatio-temporal Database", Proc.
SIGMOD 2004.

[47] M. F.Mokbel and W.G.Aref, "Generic and Progressive Processing of
Mobile Queries over Mobile Data", Proc. MDM 2005.

[48] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G.
Manku, C. Olston, J. Rosenstein, and R. Varma, “Query Processing, Re-
source Management, and Approximation in a Data Stream Manage-
ment System “, Proc. CIDR 2003.

[49] Network-based Generator of Moving Objects, http://www.fh-
oow.de/institute/ iapg/personen/brinkhoffgenerator/

[50] N. W. Paton and O. Diaz, “Active Database Systems”, ACM Computing
Surveys, vol. 31, no.1, pp. 63-103, March 1999.

[51] P. R. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based Mid-
dleware Architecture", Proc. DEBS workshop, 2002.

[52] P. R. Pietzuch, B. Shand, and J. Bacon, “A Framework for Event Com-
position in Distributed Systems”, Proc. Middleware, 2003.

[53] S. Prahakar, Y. Xia, D. V.Kalashnikov, W. G.Aref and S. E. Hambrusche.
"Query Indexing and Velocity Constrained Indexing: Scalable Tech-
niques for Continuous Queries on Moving Objects", IEEE Trans. Com-
puters, vol.51, no.10, pp. 1124-1140, 2002.

[54] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, "TiNA: A
Scheme for Temporal Coherency-Aware in-Network Aggregation",
Proc. MobiDE, 2003.

[55] M. Srivastava, "Wireless Sensor and Actuator Networks", Tutorial, Proc.
MOBICOM 2005.

[56] K. Terfloth, G. Wittenburg, and J. Schiller, “FACTS – A Rule-based
Middleware Architecture for Wireless Sensor Network”, Proc. COMS-
WARE, 2006.

[57] University of Washington. Live from Earth and Mars. http://www-
k12.atmos.washington.edu/k12/ grayskies/ nw_weather.html

[58] S. Urban, I. Biswas, and S. W. Dietrich, “Filtering Features for a Compo-
site Event Definition Language”, Proc. SAINT, 2006.

[59] J. Widom, "The Starburst Active Database Rule System", IEEE Transac-
tions on Knowledge and Data Engineering(TKDE), vol. 8, no. 4, August
1996.

[60] G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Ritter,
and J. Schiller, “Fence Monitoring - Experimental Evaluation of a Use
Case for Wireless Sensor Networks”, Proc. EWSN 2007.

[61] K. L. Wu, S. Chen and P. S. Yu, "Indexing Continual Range Queries for
Location-Aware Mobile Services", Proc. EEE 2004.

[62] K. L. Wu, S. Chen and P. S. Yu, “On Incremental Processing of Conti-
nual Range Queries for Location-Aware Services and Applications”,
Proc. MobiQuitous 2005.

[63] K. L. Wu and P. S. Yu, “Interval Query Indexing for Efficient Stream
Processing”, Proc. CIKM, 2004.

[64] E. Wu, Y. Diao, and S. Rizvi, “High-Performance Complex Event
Processing over Streams”, Proc. SIGMOD, 2006.

[65] Y. Yao and J. Gehrke, “Query processing for sensor networks,” Proc.
CIDR, 2003.

[66] S. Yoon and C. Shahabi, "The Clustered AGgregation (CAG) Tech-
niques Leveraging Spatial and Temporal Correlations in Wireless Sen-
sor Networks", ACM Transactions on Sensor Networks, vol. 3, no. 1,
March 2007.

