
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 5, AUGUST 2000 767

A Fast Algorithm for DCT-Domain Inverse Motion
Compensation Based on Shared Information in a

Macroblock
Junehwa Song and Boon-Lock Yeo

Abstract—The ability to construct intracoded frame from
motion-compensated intercoded frames directly in the com-
pressed domain is important for efficient video manipulation
and composition. In the context of motion-compensated discrete
cosine transform (DCT)-based coding of video as in MPEG video,
this problem of DCT-domain inverse motion compensationhas
been studied and, subsequently, improved faster algorithms were
proposed. These schemes, however, treat each8 8 block as
a fundamental unit, and do not take into account the fact that
in MPEG, a macroblock consists of several such blocks. In this
paper, we show how shared information within a macroblock,
such as a motion vector and common blocks, can be exploited
to yield substantial speedup in computation. Compared to pre-
vious brute-force approaches, our algorithms yield about 44%
improvement. Our technique is independent of the underlying
computational or processor model, and thus can be implemented
on top of any optimized solution. We demonstrate an improve-
ment by about 19%, and 13.5% in the worst case, on top of the
optimized solutions presented in existing literature.

Index Terms—Compressed domain processing, DCT-domain
inverse motion compensation, MPEG video, video composition,
video processing.

I. INTRODUCTION

M PEG [4], [5] has been established as a standard for
efficient storage and transmission of video. However,

the compression schemes based on a combination of discrete
cosine transform (DCT) and motion compensation (MC) do not
lead to easy manipulation and composition of the compressed
video. In both applications of compressed domain processing
and composition of compressed video streams from several
sources in a network environment, it would be advantageous to
convert the MC-DCT intercoded frames into DCT intracoded
frames directly in the compressed domain. By converting
video streams from one compressed format to the next, we
gain in computational efficiency, and eliminate the need for
decompression and possible coding delay. We will thus better

Manuscript received August 1, 1997; revised November 12, 1999. This work
was supported in part by an IBM Cooperative Fellowship, and by NIST/ATP
under Contract 70NANB5H1174.

J. Song is with IBM T. J. Watson Research Center, Yorktown Heights, NY
10598 USA (e-mail: junesong@us.ibm.com).

B.-L. Yeo was with IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598 USA and with Microcomputer Research Labs, Intel Corporation,
Santa Clara, CA 95052 USA. He is now with EXP.com, Menlo Park, CA 94025
USA (e-mail: byeo@exp.com).

Publisher Item Identifier S 1051-8215(00)06553-8.

preserve the quality of video. The computational efficiency also
leads to higher throughput in dealing with the enormous data
rates in a network environment. Techniques for the conversion
of MC-DCT intercoded frames into DCT intracoded frames
also form the basis for fast extraction of specially reduced
images in MPEG-1 [6] and MPEG-2 video [7].

This problem ofDCT-domain inverse motion compensation,
i.e., the conversion of intercoded frames into intracoded frames
directly in the DCT domain without the need for full decompres-
sion for MPEG video was studied in Chang and Messerschmitt
[1], and subsequently in [2], [3]. The idea of the algorithm in
[1] is to represent a target block as a summation of horizontally
and/or vertically displaced anchor blocks. Then, the DCT values
of the target block is constructed using the precomputed DCT
values of the shifting matrices. The general setup is shown in
Fig. 1. Here, is the current block of interest,
are the four original neighboring blocks from which is de-
rived, and the motion vector is . The shaded regions
in are moved by .

We are thus interested in obtaining the DCT representation
of block given the DCT representation of and motion
vector . If we represent each block as an ma-
trix, then we can describe in the spatial domain through matrix
multiplications

(1)

where are matrices like

or

Each is an identity matrix of size . The pre-multiplication
shifts the sub-block of interest vertically while post-multiplica-
tion shifts the sub-block horizontally.

There are four possible locations of the subblock of interest:
upper-left, upper-right, lower-right and lower-left. The actions
in terms of matrices are tabulated in Table I.

While the value of is clear from Table I with the given
values of and , we will sometime write as a function
of and . For example, .

We denote the 2D-DCT of an block as

DCT (2)

1051–8215/00$10.00 © 2000 IEEE

768 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 5, AUGUST 2000

Fig. 1. Reference block (P), motion vectors and original blocks.

TABLE I
MATRICESS AND S

where is the DCT matrix with entries (denotes
the th row and denotes theth column) given by

(3)

where

otherwise.
(4)

Using the fact that

DCT DCT DCT (5)

we can write

(6)

The shifting matrix based technique shown in (6) was ear-
lier proposed by Plompenet al. [8], [9]. They used the formula-
tion to estimate the motion vector in the transform domain and
showed that the transform-domain estimation resulted in a better
image quality. Kou and Fjallbrant [10] also used similar method
for the direct computation of DCT coefficients for a signal block
taken from two adjacent blocks. The motivation of [10] was not
processing of video, but rather processing of interpolation of
speech samples coded in DCT blocks.

In [2], a fast algorithm for computing (6) is proposed. The
algorithm is based on the factorization of the DCT matrix
presented in [11]. The factorization is as follows:

(7)

where
diagonal matrix consisting of real entries;
permutation matrix;

’s, ’s sparse matrices with entries 1 and;
sparse matrix with real entries.

Another fast algorithm is proposed in [3]. This algorithm ap-
proximates the DCT values of the shifting matrices by using a
finite sum of powers of twos. Then, the matrix multiplications
in (6) is implemented by basic integer operations such asADD
andSHIFT.

In this paper, we provide a novel technique to speed up the
DCT-domain inverse motion compensation. The algorithms
proposed in the literature so far construct the DCT-domain
values of each target block separately [1]–[3]. However, motion
compensation in MPEG stream is done on macroblock basis.
This means that there is shared information in the predictions
of multiple neighboring blocks. We take a few blocks
(for luminance component, there are four such blocks in each
macroblock) as a unit and carefully rearrange the computation
steps across correlated target blocks. By this, the hidden shared
information is exposed and the overall process of computation
is sped up by reusing thus identified shared information across
the prediction of multiple blocks. This results in about 44%
improvement over the brute-force method in [1].

One important aspect of the proposed method is that it is inde-
pendent of the underlying computational (or processor) model.
This means that the method can be used upon any fast algo-
rithms and yield further speedup in the computation. We show in
Section III that our method can be implemented on top of the al-
ready fast algorithms proposed in [2] and [3], and improve about
19% and 13.5% on top of these techniques. The percentage im-
provement numbers are derived based on the use of different
computation models and calculation methods in each of the two
work. In fact, the technique in [3] is faster than that of [2] by
72%. Thus, when our technique is applied on top of that in [3],
using the same calculation methods of [3], we can improve by
another 13.5%.

Another advantage of the method is in its flexibility. Since
it is not hard-wired to any specific filtering or approximation
technique, it can be easily combined with any specific filtering
algorithms. While the focus of this paper is on reconstructing
the full frames in DCT domains, the techniques apply to recon-
struction of frames of reduced resolution [6], [7].

SONG AND YEO: A FAST ALGORITHM FOR DCT-DOMAIN INVERSE MOTION COMPENSATION 769

Fig. 2. Prediction of a16� 16 macroblock.

The rest of this paper is organized as follows. In Section II,
we present the key ideas of identifying and utilizing shared in-
formation, including common motion vectors and blocks. We
show in Section III that our method can be implemented on top
of the two already fast algorithms proposed in [2], [3] and fur-
ther improve their performance. Finally, we conclude the paper
in Section IV. We refer the readers to [4], [5], [12], [13] for de-
tails on MPEG.

II. M ACROBLOCK-BASED PREDICTION: UTILIZING SHARED

INFORMATION

The DCT-domain inverse motion compensation in (6) con-
structs the DCT-domain values of each target block separately.
The method requires the computation of the DCT domain values
of its contributing blocks. In general, a target block is predicted
from (up to) four anchor blocks. Therefore, the DCT-domain
prediction of a target block requires the construction of DCT-do-
main values of (up to) four contributing blocks. However, in
many cases, anchor blocks can be shared across multiple target
blocks. This means that there is shared information in the pre-
dictions of multiple blocks. Therefore, careful rearrangement of
computation steps across correlated target blocks can speed up
the overall process of computation.

From (6), the computation of DCT-domain values of con-
tributing blocks is a special case of pre- and post-multiplication
of an data block with two matrices, where the ma-
trices can be preprocessed. Given an data block and two

matrices and , the computation of the matrix multi-
plication of the type will be called aTM operation. In
the following,TM operation is taken as the unit to measure and
compare the computational complexity of DCT-domain inverse
motion compensation.

Fig. 2 shows the prediction of a macroblock .
Each of the four target blocks , , , and
is predicted from its four anchor blocks, , , , and ,

, respectively. For the prediction of each target
block, the DCT-domain values of the four contributing blocks
need to be computed and added. Since the computation of the
DCT-domain value of each contributing block requires aTM
operation, 16TM operations are required to predict the whole
macroblock. However, note that the predictions of four target
blocks are strongly correlated to each other and do not have to
be computed independently. We will now state three observa-
tions below related to the setup of these 16 contributing
blocks. These three observations form the foundations of our
fast algorithm, described in the subsequent sections.

Fig. 3. Prediction of two horizontally neighboring regions.

First, although there are totally 16 contributing blocks for
each macroblock, there are only 9 different anchor blocks, and
five of them are shared among multiple target blocks, since the
target blocks belong to the same macroblock and are predicted
using the same motion vector. That is, the target blocksand

share two anchor blocks, i.e., and .
Similarly, and share and , etc.

Second, the vertical and horizontal displacements of partici-
pating subblock within an anchor block are pair-wise identical.
Therefore, we have

Furthermore, we will make use of the following properties:

for some permutation matrices and .
Third, the vertical and horizontal displacements of each par-

ticipating subblock within the anchor block are identical across
the four target blocks, , , , and , i.e.,

and for
, where ’s and ’s superscribed by the anchor block

(such as and) denote the horizontal and vertical dis-
placements of anchor block.

In the following, a fast algorithm for DCT-domain inverse
motion compensation is described based on the above three ob-
servations. We will show that in constructing the whole
target macroblock, the number ofTM operations is reduced to
nine, resulting in about 44% of improvement.

A. Computation of Contribution of Two Neighboring Regions

In Fig. 3, the step to predict upper regions of two horizontally
neighboring target blocks and is shown in spatial do-
main. The upper regions of the target blocks can be computed
as the addition of two contributing blocks, i.e.,
and respectively, from the anchor blocks ,
(), and .

The prediction of can be rewritten as follows:

(8)

(9)

(10)

(11)

Assume that has already been computed using
(11), and is currently sought for. The derivation of

770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 5, AUGUST 2000

Fig. 4. Brute-force computation.

(10) can be also done as . There-
fore

(12)

The equation for the target block corresponding to (12) is

(13)

Note that the DCT-domain value for the second term of (13),
i.e., has already been computed as using
(11). Therefore, only needs to be additionally
computed to get , resulting in threeTM operations
to compute both and .

The idea behind this arrangement to identify shared informa-
tion is illustrated in Figs. 4 and 5. In Fig. 4, the contributions of

, , and are separately computed. The movement of
subblocks labeled through through the effects of pre- and
post-matrix multiplications of is illustrated in Fig. 4. The
pair of matrix and associated with each arrow is used
for pre- and post-multiplication of the anchor, respectively. In
Fig. 5, the sharing of information in and is exploited
and contrasted with the approach in Fig. 4. The common term
in (11) and (13), , has the effect of hor-
izontally flipping the location of subblock and and then
vertically moving the two blocks by.

A similar idea can be applied to any pair of regions which
are vertically or horizontally neighboring. For example, for the
prediction of and

(14)

(15)

Fig. 5. Utilizing shared information.

The second terms of the two equations are the same since
.

B. Prediction of Two Neighboring Blocks

We will now examine how the prediction of two horizontally
or vertically neighboring blocks can be facilitated.

The prediction of the whole block, i.e., , can be
rewritten as follows:

(16)

(17)

(18)

(19)

Consider the prediction of , assuming that has al-
ready been predicted using (19). For this, we first note that, by
changing the orders of the terms in the computation, the deriva-
tion of in (19) can be rearranged as follows:

(20)

SONG AND YEO: A FAST ALGORITHM FOR DCT-DOMAIN INVERSE MOTION COMPENSATION 771

Fig. 6. Steps to unveil shared information while computingQ : in Figs. 6–9,
a dotted arrow denotes a subtraction of an anchor block and a straight arrow
represents an addition. Also, the shared terms are marked by dotted circles.

Fig. 7. Computation ofQ .

The equation for equivalent to (20) is

(21)

Again, the second and the fourth terms of (21) are the same as
those of (19) and can be reused, since and

. Therefore, and
, corresponding to the first and the third terms need to

be additionally computed, resulting in 6TM operations for both
and .

Figs. 6–9 illustrate how the shared computation steps are un-
veiled in the computation of and . In the figures, the 16
subblocks which contributes to the prediction of a macroblock
(see Fig. 2) is labeled by through . A dotted arrow denotes
the subtraction of an anchor block while a straight arrow denotes
the addition of a corresponding anchor block. Fig. 6 shows the
computation of the four terms in (19). The first term in Fig. 6
is computed by first taking and then by
shifting it to the upper left corner (pre- and post-multiplication
by and). The result is represented by. The other three
terms are also computed by appropriately adding or subtracting

Fig. 8. Steps to unveil shared information while computingQ .

Fig. 9. Computation ofQ .

anchor blocks, , , and then multiplying shift ma-
trices or permutation matrices. They are marked by, , and

. Similarly, Fig. 8 shows the computation of the terms in ,
as written in (21). Note that the multiplication of the permuta-
tion matrix or has the effect of the horizontal or vertical
flipping of subblocks, and results in the common termsand

, as marked by the dotted circles. Therefore, in computing
and , as shown in Figs. 7 and 9, those two terms are

computed only once and shared.
Similar idea can also be applied in the prediction of two ver-

tically neighboring blocks such as and or and
and the same amount of improvement on the computation can
be achieved. The difference lies only in the arrangement of the
equations, which can be easily deduced.

C. Prediction of the Whole Macroblock

Now, consider the prediction of the whole macroblock com-
posed of , , , and . Similar to the derivation of
(20), we can further rearrange the steps of the derivation of
differently and get the corresponding equivalent equations for

and as follows:

(22)

772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 5, AUGUST 2000

(23)

As previously described, both and can be computed
by six TM operations. Now compare (22) and (23) with (19)
and (21). The third and the fourth terms of (22) are the same
as those of (19), since and . The second
and the fourth terms of (23) are the same as those of (22), since

and . Finally, the third term of (23) is the
same as that of (21), since and . Therefore,
two additionalTM operations are required to compute and
only one for , resulting in a total of
TM operations for the whole macroblock. This yields a gain of

.

D. Special Cases: Vertically or Horizontally Aligned Blocks

Now let us consider special cases when the contributing
subblocks are vertically or horizontally aligned with the
corresponding anchor blocks, i.e., or . In these
cases, each target block is composed from two anchor blocks,
and two vertically or horizontally neighboring target blocks
share an anchor block. We now analyze the case when blocks
are vertically aligned and show that the construction of two
horizontally neighboring blocks can be done with threeTM
operations. The situation for horizontally aligned blocks is
similar.

When is vertically aligned, we have , and thus
. We rewrite (8) as

(24)

(25)

Similarly, we have , and we rewrite (13) as

(26)

Thus, to compute two blocks, it will take threeTM operations
using shared information versus fourTM operations using the
straightforward approach. This yields a gain of 25%. Note that
in this case, and do not contribute to the computation of

.

III. FAST COMPUTATIONS

We will now present in detail how our proposed fast tech-
niques based on shared information can be applied to existing
fast algorithms for DCT-domain inverse motion compensation.
In particular, we will focus on two techniques proposed in [2]
and [3]. Each of the techniques has its own method of computing
the performance, and we will use the same computing method
for comparing the improvement with each technique.

A. Factorization of DCT Matrix

The speedup of the algorithm in [2] has been achieved based
on two observations. First, they utilize the fact that vertical (hor-

izontal) shifting of two horizontally (vertically) neighboring an-
chor blocks are the same, i.e., , ,

, . Second, instead of fully pre-computing ,
, they factorize those matrices into rela-

tively sparse matrices.
The matrices to be precomputed are

where matrices , , , and are the components of
the factorization in (7), and and

. Then, , and ,
can be factorized as follows. In the case of for a
certain ,

or (27)

(28)

Now, the prediction of a target block from anchor blocks
, is computed by the following (or its dual):

(29)

(30)

Note that this method does not utilize the shared information
across neighboring target blocks. Therefore, we can still speed
up by rearranging the computation steps. First, consider the pre-
diction of two horizontally neighboring blocks and in
Fig. 2. The equations for the predictions of and in spa-
tial domain can be rewritten as follows:

(31)

(32)

The DCT-domain versions of (31) and (32) have similar struc-
tures to (29). Therefore, we can apply the same factorization as
in (30). The only difference is the permutation matrix in (31)
and (32). This problem is solved as follows:

(33)

SONG AND YEO: A FAST ALGORITHM FOR DCT-DOMAIN INVERSE MOTION COMPENSATION 773

Similarly

(34)

Therefore, we can apply the factorizations in (29) and (30), as
shown in (35)–(37), at the bottom of the page. Note that one of
the two terms inside the DCT matricesand can be reused in
predicting . Therefore, disregarding the cost of DCT trans-
formation, we can save of computation per block.
Now let us analyze the computational cost following the anal-
ysis method in [2] and precisely compare two algorithms. In [2],
the performance is measured by counting the number of basic
arithmetic operations in the PA-RISC processor, such as ADD,
SHIFT, and SHIFT-ADD. The worst-case analysis in the paper
can be summarized as follows. The factorized versions of
and , such as , are denoted as and ,
respectively. We refer the readers to [2] for more details about
the actual derivations.

1) Cost of a 2-D DCT: 672 arithmetic operations. The 2-D
DCT used in [2] is based on the fastest known algorithm
for 8-point DCT due to Araiet al. [11] and built upon
the work of Winograd [14]. See also [15] for in-depth
treatment of fast DCT algorithms.

2) Worst-case cost of pre- or post-multiplication by or
: arithmetic operations.

3) Worst-case cost of predicting a block: six multiplications
by or three matrix additions one 2D-DCT

arithmetic operations.

Note that in (30), three matrix additions are used. In [2], the
total number of arithmetic operations did not include these ma-
trix additions. However, we include the cost of matrix additions
() to compare the two methods in a more precise
way so as to count the effect of extra additions required in our
method, i.e., , , etc., as in (37), shown at the
bottom of the page. The purpose of following [2]’s scheme of
counting operations is for direct comparisons of our proposed
scheme with [2]’s scheme. It is reasonable to assume that the
counting model chosen in [2] also applies to other architecture.

Now consider the effect of permutation matrix as in (33),
(34), and (37). We denote the factorized versions of and

in (33) and (34) as and , respectively. That is,
and . In [2],

the cost of multiplying a permutation matrix was ignored, since
it causes only changes in the order of matrix components. There-
fore, the effect of multiplying matrix can be ignored as well.
From [2], the number of operations for is 432
arithmetic operations, which is the cost of multiplying or

. Now, the total number of operations to compute and

in the worst case when utilizing the shared information as
in (37), shown at the bottom of the page, is 5360, as follows.

1) : five multiplications by or one multiplica-
tion by or three matrix additions one 2D
DCT:

2) : three multiplications by or two matrix
additions one 2D DCT:

3) four extra matrix additions (, , ,
and):

Therefore, to predict one block, operations are
used, which is improvement over
the method in [2] in the worst case.

As before, if we consider the prediction of the whole mac-
roblock, we can find out more shared terms. To simplify the no-
tations, we rewrite (19) and (21)–(23) (which are for the predic-
tions of , , , and in Fig. 2) by renaming matrices

where

Now for the prediction of and , the factor-
ization of (29) and (31) can be applied to the following rear-
ranged equations and intermediate results for the shared terms
can be reused:

(38)

(39)

(40)

(41)

(35)

(36)

(37)

774 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 5, AUGUST 2000

Now consider the extra matrix additions to compute,,
, and , . Computation of each takes one

matrix addition. Once ’s are available, and can be com-
puted with five matrix additions by arranging the computation
as follows:

Similarly, and can be computed with five matrix addi-
tions. Therefore, the total number of extra matrix additions is 14.
The number of arithmetic operations required can be counted as
follows.

1) Cost to compute : three multiplications by or
three multiplications by or three matrix

additions one 2D-DCT
.

2) Cost to compute : two multiplications by or
one multiplication by or two matrix additions

one 2D-DCT
.

3) Cost to compute : three multiplications by or
one multiplication by or three matrix addi-

tions one 2D-DCT
.

4) Cost to compute : two multiplications by or
two matrix additions one 2D-DCT

.
5) Cost for extra matrix additions (to compute):

14 matrix additions .
Therefore, the total cost to compute four blocks

, which amounts to
for one block. Compared to the algorithm in [2], we obtain

an improvement of in the
worst case.

Now, let us again consider the special cases when we have
vertically or horizontally aligned blocks. As shown in Sec-
tion II-D, the chance of speedup, in these cases, is less, since
number of shared anchor blocks are reduced. However, we can
still uncover some shared information and gain some amount
of speedup. From [2], the cost in the worst case for these cases
is 1152 operations. To demonstrate the improvement using
shared information, we first write (25) in terms of the above
factorizations

(42)
A similar equation holds for (26)

(43)
In the worst case, the total number of operations for (42) be-
comes: one multiplication by one multiplication by
two matrix additions one 1D DCT, giving

. For (43), taking into account the shared informa-
tion used, we have: one multiplication by two matrix ad-

ditions one 1-D DCT, giving . There-
fore, the total cost to compute two blocks ,
which amounts to operations per block. Com-
pared to the algorithm in [2], we obtain an improvement of

.

B. Approximation of Shifting Matrices

Another fast algorithm has been proposed in [3]. It achieves
72% improvement over the algorithm in [2] and 81% over the
DCT/IDCT method based on the fastest existing 8-point DCT
[11]. The idea of utilizing shared information can also be used
on top of this fast algorithm and can further speed up by 13.5%.

The basic idea of the algorithm in [3] is as follows. Each entry
of the DCT values of the shifting matrices in (6) is approximated
by a finite sum of powers in two’s with a maximum distortion of
1/32. The matrix multiplications in (6) can then be implemented
by basic integer operations such asADD andSHIFT. The data
representation and the order of computation are optimized to
reduce the number ofSHIFToperations. It is shown that a DCT
block can be constructed with only 810 arithmetic operations of
ADD’s andSHIFTS’s.

As before, we can apply our proposed technique by utilizing
shared information as in (31) and (32). The DCT values of the
permuation matrices, or are also repre-
sented as summations of power of two. With some lineup of the
computation steps, the pre- or post-multiplication by
or can be performed with between 82 and 116 arith-
matic operations. In the end, the number of arithmetic opera-
tions required to compute both blocks in (31) and (32) is 1401.
Therefore, for one block, it requires 700.5 operations, which
means 13.5% (1–700.1/810) improvement. Note that applying
(19) and (21)–(23) to utilize more common terms by considering
four neighboring blocks does not help improve the performance
any further, since the cost of extra matrix additions (64 additions
per matrix addition) gets significant compared to the cost of the
original algorithm which independently constructs each block.

IV. CONCLUSION

In this paper, we provide a novel technique to significantly
speed up the DCT-domain inverse motion compensation based
on the exploitation of shared information such as motion vec-
tors and common block within a macro-block. Our technique
results in about 44% improvement over the brute-force method
proposed in [1]. A key advantage of our proposed technique is
that it is independent of the underlying computational or pro-
cessor model, and thus can be implemented on top of any op-
timized solution. We have shown that our method can further
improve upon the optimized results of [2] and [3] by about 19%
and 13.5%, respectively.

ACKNOWLEDGMENT

The authors thank the reviewers for their valuable comments.

REFERENCES

[1] S. F. Chang and D. G. Messerschmitt, “Manipulation and compositing
of MC-DCT compressed video,”IEEE J. Select. Areas Commun., vol.
13, pp. 1–11, Jan. 1995.

SONG AND YEO: A FAST ALGORITHM FOR DCT-DOMAIN INVERSE MOTION COMPENSATION 775

[2] N. Merhav and V. Bhaskaran, “A fast algorithm for DCT domain in-
verse motion compensation,” inProc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing, vol. 4, May 1996, pp. 2307–2310.

[3] P. A. A. Assuncao and M. Ghanbari, “Transcoding of MPEG-2 video in
the frequency domain,” inICASSP 1997, 1997, pp. 2633–2636.

[4] Coding of Moving Pictures and Associated Audio for Digital Storage
Media up to 1.5 bits/s, ISO/IEC JTC1 CD 11172, 1992.

[5] Generic Coding of Moving Pictures and Associated Audio, ISO/IEC
JTC1 CD 13 818, 1994.

[6] B. L. Yeo and B. Liu, “Rapid scene analysis on compressed videos,”
IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp. 533–544, Dec.
1995.

[7] J. Song and B. L. Yeo, “Fast extraction of spatially reduced image se-
quences from MPEG-2 compressed video,”IEEE Trans. Circuits Syst.
Video Technol., vol. 9, pp. 1100–1114, Oct. 1999.

[8] R. H. J. M. Plompen, B. F. Schuurink, and J. Biemond, “A new motion
compensated transform domain coding scheme,” inProc. ICASSP’85,
vol. 1, 1985, pp. 371–374.

[9] R. H. J. M. Plompen, J. G. P. Groenveld, D. E. Boekee, and F. Booman,
“The performance of a hybrid video-conferencing coder using displace-
ment estimation in the transform domain,” inICASSP’86, 1986, pp.
4.8.1–4.8.4.

[10] W. Kou and T. Fjallbrant, “A direct computation of DCT coefficients
for a signal block taken from two adjacent blocks,”IEEE Trans. Signal
Processing, vol. 39, pp. 1692–1695, July 1991.

[11] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for im-
ages,”Trans. IEICE, vol. E71, pp. 1095–1097, Nov. 1988.

[12] J. L. Mitchell, W. B. Pennebaker, C. E. Foog, and D. J. Le Gall,MPEG
Video Compression Standard. London, U.K.: Chapman and Hall,
1996.

[13] B. G. Haskell, A. Puri, and A. N. Netravali,Digital Video: An Introduc-
tion to MPEG-2. London, U.K.: Chapman and Hall, 1997.

[14] S. Winograd, “On computing the discrete Fourier transform,”Math. of
Comput., vol. 23, pp. 175–199, Jan. 1978.

[15] W. B. Pennebaker and J. L. Mitchell,JPEG: Still Image Data Compres-
sion Standard. New York: Van Nostrand, 1993.

[16] J. Song, “Structured composite multimedia documents: Design and pre-
sentation in a distributed environment,” Ph.D. dissertation, Department
of Computer Science, Univ. Maryland at College Park, , College Park,
MD, 1997.

Junehwa Songreceived the B.S. degree from Seoul National University, Seoul,
Korea, in 1988, the M.S. degree from the State University of New York in 1990,
and the Ph.D degree from the University of Maryland at College Park in 1997,
and all in computer science.

He is currently a Research Staff Member at IBM T.J. Watson Research Center,
Yorktown Heights, NY, where his focus has been on issues of distributed mul-
timedia systems and internet intermediaries. He was awarded an IBM graduate
fellowship during 1995-1997.

Boon-Lock Yeo received the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ.

He is currently the Senior Vice President of Technology and Engineering at
EXP.com, Menlo Park, CA, the online marketplace for expert advice and ser-
vices, where he leads the development of the site and creation of novel commu-
nication technologies, such as transaction-based chat and phone. Prior to this, he
led R&D efforts on media technology at the research labs of Intel Corporation,
Santa Clara, CA, and IBM, Yorktown Heights, NY. He has published over 30
technical papers and holds five U.S. patents (and over 30 pending applications).

Dr. Yeo previously served as an Associate Editor for the IEEE TRANSACTIONS

ON IMAGE PROCESSINGand is a recipient of the Best Paper Award.

