
WADN: Web Application Delivery Network

Jungsook Kim1, SungJae Jo1
, Junehwa Song1, Minyeol Lim2, Hyngwoo Park2

1: Network Computing Labaratory

KAIST, Guseong-Dong, Yuseong-Gu, Daejeon, 305-701, Korea
{sun, stanleylab, junesong}@nclab.kaist.ac.kr

2: KISTI, Eoun-Dong 52, Yuseong-Gu, Daejeon, 305-806, Korea

mylim@hpcnet.ne.kr, hwpark@kisti.re.kr

Abstract

The high dynamicity of e-Business environments causes the
merchants to confront the sudden increase in loads. In this
paper, we propose WADN (Web Application Delivery
Network), a new service supporting dynamic scalability for
Web application servers. Using WADN, system capacity is
adjusted to workload by expanding additional servers
dynamically. Also, WADN help minimize the total number
of currently used Web application servers while stably
serving customers. Thus, merchants can reduce the total cost
of ownership.

1. Introduction

With rapid expansion of the Internet technology, e-
Business becomes an important part of business activity. The
notable characteristics distinguishing e-Business from
traditional one is as follows. First, business requests tend to
be temporally skewed. People often share interests to
common business events in similar periods of time, which is
remarkable on the highly accessible Internet. Yet, it is
difficult to predict such burst requests. Second, dynamic
contents are taking a significant portion of e-Business
contents. Merchants realize several advanced services, e.g.,
personalized information presentation and database searching,
via dynamic contents flexibly handling customer’s demand.

The e-Business characteristics incur a serious problem
of overloading servers frequently and abruptly. In such an
overloaded situation, both customers and merchants suffer
from bad performance. Once incoming requests exceed
server capacity, response time and connection error rate
explosively increase and this terrible situation affects all
customers. The delayed response time and high connection
error rate can impose a serious damage even on a major
merchant site. A recent report from Zona Research [1]
showed that with response time of less than 7 seconds, e-
commerce sites find 7% abandonment rate, whereas this rate

sharply increases to 70% with response time greater than 12
seconds.

To efficiently address the overloading problem, we
propose a new service called “Web Application Delivery
Network” (WADN). WADN enables the system capacity to
be adaptive by expanding the system dynamically. That is,
the numbers of servers comprising the system are adjusted to
workload dynamically and automatically. In order to
participate in WADN, each server should deploy WADN
core. Then, it turns into a WADN node. The WADN node
continuously monitors its load and senses the overload.
When the WADN node forecasts to be overloaded in the near
future, it will join to a new WADN node (after we call it a
target WADN node) to the system in runtime. In Join Process,
WADN node automatically delivers and deploys Web
applications needed for serving requests. When the total
system load is reduced to the normal level, the system
releases the target WADN nodes.

The WADN provides two advantages. First, the WADN
enables merchants to reduce their total cost of ownership
while they stably serve customers even during the peak
request periods. Merchants rent some WADN nodes during
rush time and pay for them on time-based. Second, the
WADN efficiently uses the Internet resources. WADN uses
idle WADN nodes in order to distribute the load of busy
system.

Server clustering [2] and proxy cache server [3, 4] are
the most commonly used approach to increase the server
capacity and partly address the problem of overloading
server easily. Using Server clustering, the merchants should
guess at amount of resources enough to serve peak request
rate. Based on the estimation, the merchants invest big
money in system resources, which may be underutilized most
of time. Thus, this approach is inefficient and the estimation
is likely to be inaccurate. Proxy cache intercepts and serves
customer requests in an intermediary. Thus, it makes the
server capacity seem increased. The approach is good at
handling static content. However, for dynamic contents, it is
still immature.

mailto:junesong}@nclab.kaist.ac.kr
mailto:mylim@hpcnet.ne.kr

The paper is structured as follows. In section 2, we
introduce a new scalable service, called WADN. In section 3,
we describe a WADN component in detail. We conclude in
section 4 with a discussion of WADN

2. Architecture

In this section, we introduce WADN and the
architecture of the WADN node. Figure 1 shows the WADN.
In the WADN, WADN nodes are flexibly coupled with
others and forms dynamically expansible virtual merchant
system. Each WADN node can belong to several virtual
merchant systems.

Figure 1. Web Application Delivery Network

The WADN node is composed of a Web server, an

application server and WADN core. The overall architecture
of the WADN node is illustrated in Figure 2. The
components of WADN core are Request Processor, System
Manager, Delivery Manager, Packer & UnPacker, Source
Converter and Deliverer. We explain a rough role of the
components and operations between them. Following
describes the steps that WADN node takes for dynamic Web
application delivery:

 A merchant system receives an initial request.
 If the request requires dynamic content generation,

front-end Web server relays it to Request
Processor of WADN core. Based on its load,
Request Processor decides whether its own
application server process it or not.

 When the load is under the threshold, Request
process relays it to its own application server.
Otherwise, Request Processor orders that
Delivery Manager add a new WADN node.

 Then, Delivery Manager transmits and deploys a
Web application needed for serving customer
requests using Converter, Packer, and Deliverer.

 After the delivery, the target WADN node is
ready to serve and the virtual merchant system
capacity is finally increased.

The WADN core is located in between a Web server
and an application server. This approach enables the WADN
system to take dynamic expansion without any changes to
the web server and the application server. A server can easily
become a WADN node by changing the connector module
between the Web server and the application server.

Web Application Server

Web Server

Request Processor

System
Monitor

Delivery Manager

Source
Converter

Packer &
UnPacker

Deliverer

process static
request

Web requests
(dynamic and static)

Dynamic content request

Dynamic content request

WADN Core

redirect Web requests

Metadata
Repository

deliver Web application

Response for
static request

Figure 2. Architecture of the WADN node

3. Design

In this section, we discuss each component of the

WADN node. Our goal in designing the components was to
high performance and automatic application delivery and
deployment.

3.1 Request Processor

Based on the delivery policy and monitored load

information, the Request Processor decides whether it adds a
new WADN node on the virtual merchant system or not. If
the system needs another WADN node, Request Processor
notifies this decision to Delivery Manager. Then, Delivery
Manager selects the target WADN node.

For easy session management, we propose that the
Request Processor performs request delivery decision based
on each incoming user sessions rather than on an individual
request. Session based control is important because many
web-based services are transactional in nature, and consist of
many requests to the web service. Under overload situation,
session-based control schemes allow existing user sessions to
continue, while new sessions are redirected to the target
WADN node. Our approach is effective and reasonable
because most sessions last less than 1000sec and have less
than 10 requests except agents or robots.

3.2 System Monitor

The system Monitor checks the load status of the system

resources occupied by Web services on a regular interval;
CPU, I/O, memory, and network resource, and etc. The
detected load information is used in Request Processor to
make a decision over the delivery and is saved in a metadata
repository.

We propose a flexible load monitoring services that can
be extended to support new load metrics, as well as different
policies to collect such metrics. In a Web server, the load is
directly proportion to the number of connections. However,
the load of the Web application server is changed according
to a kind of Web applications and services. A System
Monitor implements a strategy for monitoring loads on given
resources. The interface for reporting loads to the Request
Processor and meta-data repository remains unchanged for
each System monitoring strategy. Strategizing load
monitoring makes it possible to use a Request Processor that
is not specific to a particular type of load, such as CPU load
or I/O load. Thus, a Request Processor need not be
specialized for a given type of load. This design simplifies
deployment of all kinds of Web application since one
Request Processor can process many different types of load.

3.3. Delivery Manager

The Delivery Manager makes decisions for a target

WADN node selection and application delivery. According
to selection strategy, the Delivery Manager selects the target
WADN node which might be a lot and scattered on the world
with different loads. The selection strategy is composed of
load status, location, and Web application existence
information stored in meta-data repository. The selected
target WADN node finally joined to the virtual merchant
system only after getting a valid Web application.

3.4 Source Converter

The Source Converter enables Web applications to be

portable. In our design and implementation, we suppose the
Web applications are Java Servlet and Java Server Pages.
Thus the Web application code is platform independent if
servers have Java Virtual machine. However, Web
applications usually access external resources such as a
database and a file server, and they may be different
according to servers. The Source Converter modifies the
portion of server dependent codes so that the delivered Web
application can be executable on the target WADN node.

3.5 Packer & UnPacker

Packer and UnPacker respectively marshals and

unmarshals a deliverable Web application. Usually, the Web
application is composed of many components such as,

images, html page generating codes and etc. Packer gathers
the components related to the deliverable Web applications
and packs them. And then for efficient delivery, the Packer
compresses them. The Packer has two alternatives in design;
source trace mechanism and previous deployment
mechanism. For effective and easy delivery, we choose the
second method in our implementation. We pack and deploy
all components related to Web application at the origin
WADN node in advance. This significantly reduces
searching overhead performed in every delivery.

UnPacker does reverse process of the Packer. UnPacker
unpacks and deploys delivered packages in the WADN node.

3.6 Deliverer

Deliverer transmits the packed Web application to the
target WADN node. When the Delivery Manager decides to
deliver the Web application to the target WADN node, the
Delivery Manager calls the Deliverer. After the delivery, the
target WADN node is ready to serve and the virtual merchant
system capacity is finally increased.

4. Conclusion

Burst requests for dynamic contents have been resulting

in heavy overload on Web Application servers. In this paper,
we have proposed the WADN supporting the dynamic
scalability with dynamic server adaptation. Joining to
WADN, all merchant systems can be robust systems
separated from burst request increase. Thus, every merchant
in WADN can always provide stable services.

We plan to continue our work in several directions. One
is fully implementing the WADN system. We are also
investigating other advanced services which can be realized
by using the WADN.

5. Reference

[1] www.zonaresearch.com
[2] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, “Locality-Aware Request
Distribution in Custer-based Network Servers”, Proceedings
of the Eighth Symposium on Architectural Support for
Programming Languages and Operating Systems, pp. 205-
216, October 1998.
[3] Pei Cao and Sandy Irani, “Cost-Aware WWW Proxy
Caching Algorithms”, in Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems, pp. 193-
206, Dec 1997
[4] Martin Arlitt, Ludmilla Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin, “Evaluating Content Management
Techniques for Web Proxy Caches”, in Second Workshop on
Internet Server Performance, in conjunction with ACM
SIGMETRICS 99, Atlanta, GA, May 1st, 1999

http://www.zonaresearch.com/
http://nclab/lecture/te628_2001_Fall/seminar/papers/gd-size.ps
http://nclab/lecture/te628_2001_Fall/seminar/papers/gd-size.ps

