Orchestrator: Active Resource Orchestration Framework for PAN-Scale Sensor-rich Mobile Environment
PAN-scale Sensor-rich Mobile Computing Platform

- Upcoming pervasive computing platform
 - Dynamic mobile platform with diverse sensors (wearable/phone-embedded/space-embedded, ...)
- A number of personal context-aware applications will run on it.
 - Providing proactive, personalized, situation-aware services

Wearable sensors

Space/object-embedded sensors

- U-Secretary
- Location-based Services
- Health Monitoring
- U-Learning
- U-Trainer
- Diet diary
- U-Reminder
- Behavior correction

Location-based Services

Health Monitoring

U-Trainer

U-Secretary

U-Reminder

Diet diary

U-Learning

Behavior correction
Continuous Personal Context Monitoring

- A key building block for personal context-aware applications
- Involves complex, multi-step, continuous processing spanning multiple sensors/ mobile devices
 - E.g. “Running” → sensing in five 3D accelerometers, FFT processing, decision tree [Pervasive ‘04]
Challenges

- A number of context-aware applications share highly scarce resources of the PAN-scale mobile computing platform
 - Context monitoring requires complex and continuous processing over multiple devices
 - Many concurrent applications and scarce resources incur serious resource shortage/contention

- Significantly scarce resources
 - Limited battery power due to mobility
 - E.g. MicaZ Motes: 8MHz CPU, 4KB RAM, ~50Kbps Bandwidth
 - A light FFT library, kiss_fft, requires 40KB RAM, 10 MHz CPU

- Dynamic join/leave of heterogeneous sensors
 - E.g. take off a watch sensor, enter a space with sharable environmental sensors

- Dynamic changes in resource demands and status
 - Continuous changes in running applications and their requests
 - Sudden drops in bandwidth availability due to mobility, obstacles, ...
Applications themselves cannot solve the challenges

- **Context monitoring is complex.**
 - Burdensome programming and debugging
 - to implement complex feature extraction and recognition modules
 - Repetitive and time-consuming training process

- **Resource use/scheduling of the platform is complex.**
 - Need to aware resource demands to fit in the scarce resources
 - Need to handle dynamics in sensor availability and status

- **Hard to coordinate resource use with many other applications**
 - No adequate tools to communicate and negotiate with each other
 - Although possible, hard to expect and deal with every case
Objective

• An effective “resource coordination system”
 ▫ for PAN-scale dynamic distributed computing platform

Enable the platform to support a number of concurrent and long-running apps with highly scarce and dynamic resources
Approach: Active Resource Use Orchestration

Active resource use orchestration

- High-level context monitoring request
 - E.g. Context == Running

- System-wide holistic view of applications and resources

- Flexible system-driven resource binding

Vs. Passive resource use management

- Low-level resource allocation request
 - E.g. 5MHz CPU, 5KB RAM, 10kbps Bandwidth for a watch sensor

- Limited view on the resource requests

- Static app.-driven resource binding
Proposed approach: Active resource use orchestration

<table>
<thead>
<tr>
<th>Active resource use orchestration</th>
<th>vs. Passive resource use management</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level context specification/request</td>
<td>Low-level resource specification/request</td>
</tr>
<tr>
<td>activity==running, location==library</td>
<td>Acceleration sensor on wrist Memory: 3KB, BW: 20pkts/sec, Energy: 3J/min</td>
</tr>
<tr>
<td>Flexible system-driven resource binding and scheduling</td>
<td>Static application-driven resource binding</td>
</tr>
<tr>
<td>(Option 1) wrist-worn acceleration sensor (1KB, 3pkts/sec, 1J/min) (Option 2) waist-worn acceleration sensor (50B, 20pkts/sec, 4J/min)</td>
<td></td>
</tr>
<tr>
<td>System-wide holistic view on applications and resources</td>
<td>Limited understanding(or view) on the resource requests</td>
</tr>
</tbody>
</table>
Advantages

• From the platform’s perspective
 ▫ Efficient resource utilization
 • Exploit overall resource capacity with balanced utilization (avoiding skewed/unbalanced resource use)
 • Host more applications with scarce resources

• From the applications’ perspective
 ▫ Provide longer lasting services to its mobile users even with highly scarce resources
 ▫ Provide seamless and stable services even under highly dynamic resource situation
Related work (Environment)

• No previous work provides a active orchestration system
 ▫ For multiple context-aware applications
 ▫ Over the whole PAN-scale sensor-rich mobile platform

• Resource management systems in a piecemeal, per-device fashion
 ▫ For a mobile device (mostly laptop)
 • Odyssey [SOSP’ 99], Chameleon [TMC ’08], ECOSystem [ASPLOS ’02]
 ▫ For a sensor
 • Pixie [Sensys ’08], EON [Sensys ’07], Level [Sensys ’07]
 ▫ These systems are difficult to resolve
 • resource contention among multiple applications
 • skewed resource utilization

• Systems for sensor network ?
 ▫ It is mainly considered as a data collection platform
 • Focus on the MAC/routing algorithms/methods to reduce communication cost
 ▫ Recently peloton is proposed for resource management
 • But, simple passive resource use management
Related work

- No work provides a resource use orchestration framework for PAN-scale dynamic distributed computing platform

- Work for resource management in mobile computing, sensor network

<table>
<thead>
<tr>
<th>Area</th>
<th>Apps</th>
<th>Target device</th>
<th>Resource coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile system</td>
<td>Odyssey [SOSP’99]: Energy-aware adaptation of apps</td>
<td>Single mobile device</td>
<td>Application-driven, Priority-based</td>
</tr>
<tr>
<td></td>
<td>Chameleon [TMC’08]: Application-level DVFS for energy management</td>
<td>Single mobile device</td>
<td>Application-driven, Isolation</td>
</tr>
<tr>
<td></td>
<td>ECOSystem [ASPLOS’02]: System for energy management to meet lifetime goal</td>
<td>Single mobile device</td>
<td>System-driven energy allocation, Static proportional share</td>
</tr>
<tr>
<td>Sensor network/system</td>
<td>Pixie [SenSys’08]: Sensor OS for resource-aware application</td>
<td>Single sensor node</td>
<td>Application-driven, Priority-based (for app sub-tasks)</td>
</tr>
<tr>
<td></td>
<td>Peloton [HotOS’09]: Distributed sensor OS</td>
<td>Multiple sensor nodes</td>
<td>Based on Pixie Conceptual architecture proposed, yet to build a system</td>
</tr>
<tr>
<td></td>
<td>[SenSys’04], [Infocom’02], [HICSS’00]: Energy-efficient MAC/routing protocols</td>
<td>Multiple sensor nodes</td>
<td>Not a system to coordinate sensor network resources as a whole</td>
</tr>
</tbody>
</table>
Related work (Approach)

<table>
<thead>
<tr>
<th>Multiple Application</th>
<th>Passive Management</th>
<th>System-aided Static Management</th>
<th>Active Orchestration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odyssey [SOSP ’99]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chameleon [TMC’08]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOSystem [ASPLOS ’02]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EON [Sensys ‘07]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixie [Sensys ‘08]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peloton [HotOS ‘09]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peloton [HotOS ‘09]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orchestrator

Mobile Systems
- Sensor Systems
- Pan-scale system
Architecture design
Key functional components (operation flow)

Applications

API

Request

Context

Translation

Plan candidates

Selection

Plan for execution

Resources

Runtime Adaptation

Monitoring
High-level specification of context

- **API**
 - Int RegisterQuery (string queryString);
 - Returns query id
 - Bool DeregisterQuery (int queryID);

- **E.g.**
 RegisterQuery(“CONTEXT Activity == running ACCURACY 90% DURATION 7 days”)

- Free application developers from taking care of processing method and corresponding resource allocation (scheduling)
Dynamic query translation

Context monitoring query

Dynamic translation

Monitoring dynamically joining/leaving sensors, resource status

Running

Context specified in a query

Multiple processing plans (used processing modules and sensors, task distribution)

Available sensor pool

Sensor-side

Mobile-side

Accelerometer attached to sleeve

Frequency domain feature extractor

Decision Tree

Accel_wrist
Window 128
Sensing 50Hz

Space-embedded light sensor

U-Trainer

U-Secretary

U-Reminder

Diet diary

U-Learning

Behavior correction

Location-based Services

Health Monitoring
Two-phase translation

- Translate a context into processing plans
 - Each plan is mapped with different hardware resources
- Generate a variety of plans by combining different processing modules and sensors

Logical Translation
- Processing module decision
 - Sensing
 - Feature extraction
 - Context recognition

Physical Translation
- Hardware mappings
 - Combination of sensors
 - Distribution of processing modules

Context

Logical Processing Plan (LPlan)

Running

LPlan

Physical Processing Plan (PPlan)

PPlan

\(\ldots \)